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Supplementary Notes

(@)

Fig. S1. SEM cross-sectional images of PIM-1-COONa films with different
thicknesses.



Fig. S2. A picture of the commercially available standard Ag/AgCl electrodes used in
the experiment. The electrodes should be removed and rinsed with deionized water

when used for measurements in the osmotic power conversion experiment.



Fig. S3. SEM image of the PIM-1-COONa membrane treated with alkaline hydrolysis

for 8 hours.



Fig. S4. HRTEM image of the PIM-1-COONa membrane



Fig. SS. Photograph of the pristine PIM-1 membrane.



Fig. S6. Photograph of the PIM-1-COONa (30 pm) film.



Fig. S7. Mechanical testing machine used for measuring the mechanical properties of
the PIM-1-COONa membrane.
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Fig. S8. Tensile stress-strain curve of the PIM-1-COONa membrane.
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Fig. S9. Puncture force-deformation curve of the PIM-1-COONa membrane.
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Fig. S10. Thermogravimetric analysis of the PIM-1-COONa membrane under air
atmosphere.
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Fig. S11. Thermogravimetric analysis of the PIM-1-COONa membrane under nitrogen

atmosphere.
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Fig. S12. Comparison of current density-voltage (J-V) characteristics for the PIM-1
membrane and the PIM-1-COONa membrane.
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Fig. S13. Output power of the membrane under different pH conditions.
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Fig. S14. Comparison of current density-voltage (J-V) characteristics for PIM-1-
COONa membranes with different thicknesses.
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Fig. S15. Current density of PIM-1-COONa under different external resistances at
different thicknesses.
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Fig. S16. Power density of PIM-1-COONa under different external resistances at

different thicknesses.
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Fig. S17. Comparison of maximum output power densities for PIM-1-COONa

membranes with different thicknesses.
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Fig. S18. The maximum osmotic power output of the PIM-1-COONa membrane

remained above 90% of its initial value over 48 hours.



Supplementary Table 1. Open-circuit voltage (V,.), short-circuit current (1), short-
circuit current density (J), and maximum output power density (P.,,y) for PIM-1-

COONa membranes of different thicknesses under a 50-fold concentration gradient.

Thickness Vo I J Proax
(um) (mV) (nA) (Am?) (W m?)

12 73.04 17 566.67 10.34

22 57.78 12.33 411 5.94

36 55.72 10.19 339 4.72

45 41.21 8.69 290 2.99

54 43.31 7.69 256.3 2.77




Supplementary Table 2. Energy conversion performance across different
membranes under simulated seawater and river water conditions. V., I, and Py

represent the membrane potential, ionic current, and maximum output power density,

respectively.
Material system Ve I Pax Thickness Ref.
mV)  (Am? (Wm?)  (um)
This work 73.04 566.67 10.34 12 -
J-MOF 163.1 84.41 3.44 1 !
PSS/MOF 70 170 2.87 1.6 2
ZnTCPP/MOF 93 129.03 3 4 3
SPEEK/SPSF 140 200 7 4 4
COF-LZU1@CNT-CNF 39 436.92 4.26 0.47 3
WO;-AAO-ZIF-8 71 108.73 1.93 4.2 6
TpPa-SOsH 115 205.22 5.9 10.7 7
MOF-on-MOF 75 465.07 8.72 75.7 8

SPIM 76 504.21 9.58 108 0
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