
Direct Z-scheme Heterojunction of CsPbBr₃/SnS₂ Nanosheets for Visible Light-Driven Photocatalytic CO₂ Reduction

Li-Yuan Wu,^a Fei Zhang,^a Ming-zhe Cai,^a Min Zhang,^b Tong-Bu Lu,^b Ping Li^{*c} and Yong-Hua Chen^{*a,c}

- ^a Henan Institute of Flexible Electronics (HIFE) and School of Flexible Electronics (SoFE), Henan University, 379 Mingli Road, Zhengzhou 450046, China
- ^b MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
- ^c State Key Laboratory of Flexible Electronics (LoFE) & Institution of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China.

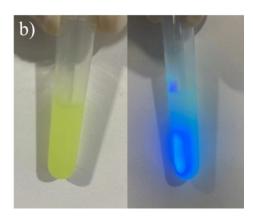


Figure S1 The photographic images of a) CsPbBr₃-OA nanosheets and b) CsPbBr₃ nanosheets dispersed in hexane under room light (left) and excitation using an ultraviolet lamp under room temperature (right).

Figure S2 a) TEM image of CsPbBr₃-OA nanosheets. b-c) HRTEM images and lattice spacing of CsPbBr₃-OA nanosheets.

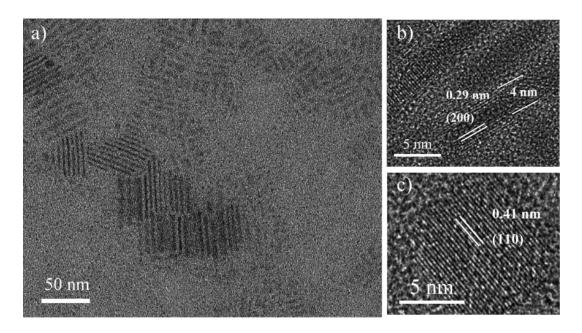


Figure S3 a) TEM image of CsPbBr₃ nanosheets. b-c) HRTEM images and lattice spacing of CsPbBr₃ nanosheets.

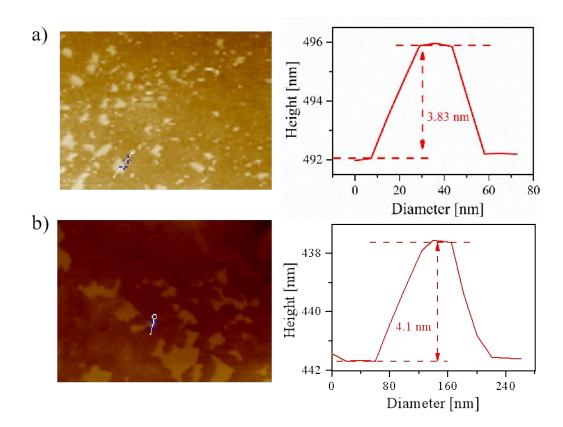


Figure S4 AFM images and corresponding height profiles of as prepared (a) $CsPbBr_3$ - OA nanosheets and (b) $CsPbBr_3$ nanosheets.

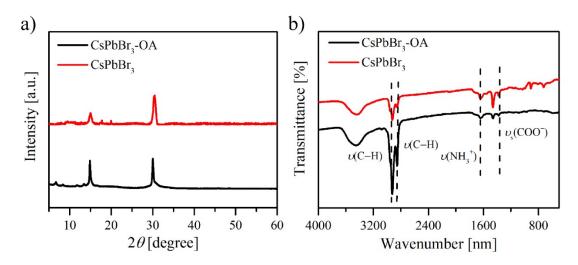


Figure S5 a) XRD patterns of CsPbBr₃-OA nanosheets and CsPbBr₃ nanosheets. b) IR spectrum of CsPbBr₃-OA nanosheets and CsPbBr₃ nanosheets.

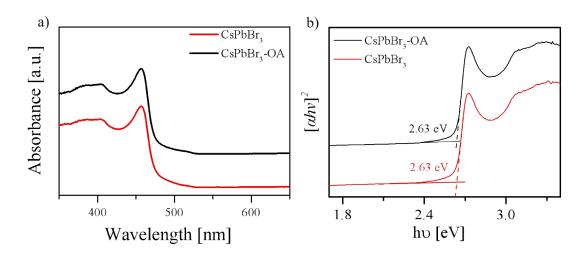


Figure S6 a) The UV-Vis absorption spectra of CsPbBr₃-OA nanosheets and CsPbBr₃ nanosheets. b) The Tanuc plots of CsPbBr₃-OA nanosheets and CsPbBr₃ nanosheets.

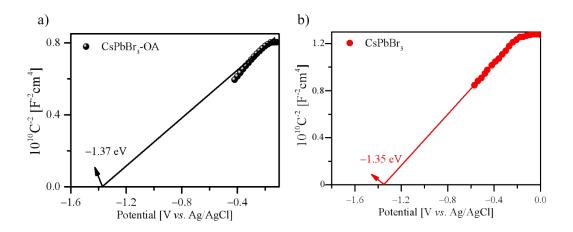


Figure S7 a) The UV-Vis absorption spectra of CsPbBr₃-OA nanosheets and CsPbBr₃ nanosheets. b) The Tanuc plots of CsPbBr₃-OA nanosheets and CsPbBr₃ nanosheets.

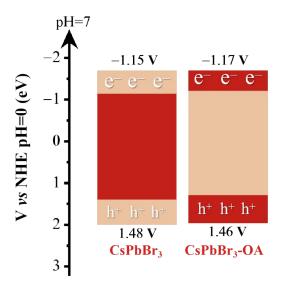


Figure S8 The band alignment of CsPbBr₃-OA nanosheets and CsPbBr₃ nanosheets.

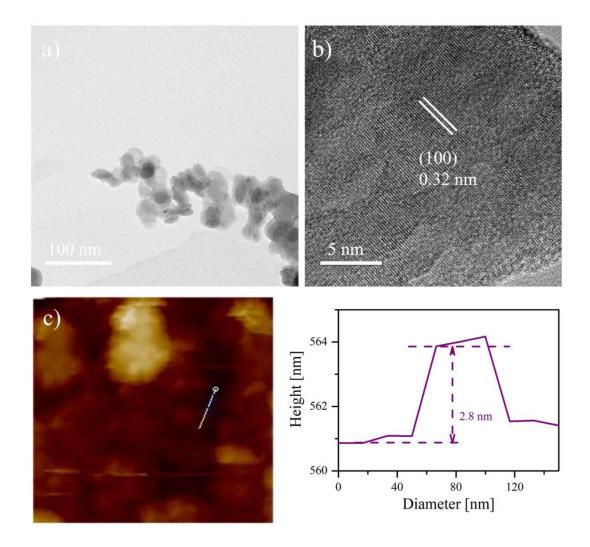


Figure S9 a) TEM, b) HRTEM images with lattice spacing of as prepared SnS_2 nanosheets. c) AFM image and corresponding height profiles of as preared SnS_2 nanosheets.

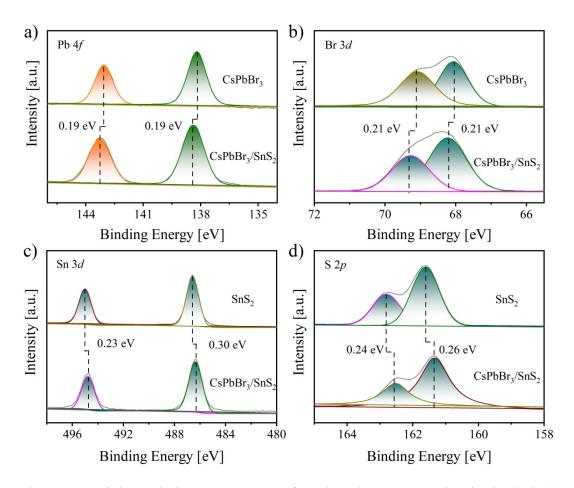


Figure S10 High-resolution XPS spectra of CsPbBr₃/SnS₂ composites in the dark (a) Pb 4f, (b) Br 3d, (c) Sn 3d and (d) S 2p.

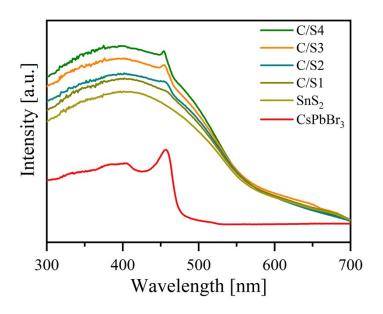


Figure S11 UV–Vis DRS spectra of S/Cx heterojunctions.

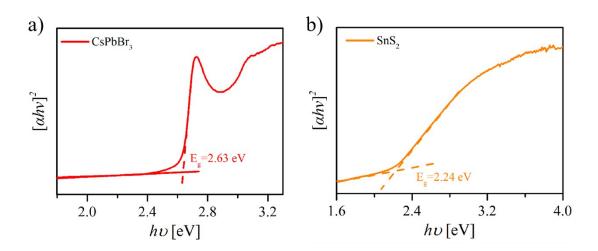


Figure S12 Tauc plots of $CsPbBr_3$ nanosheets and SnS_2 nanosheets.

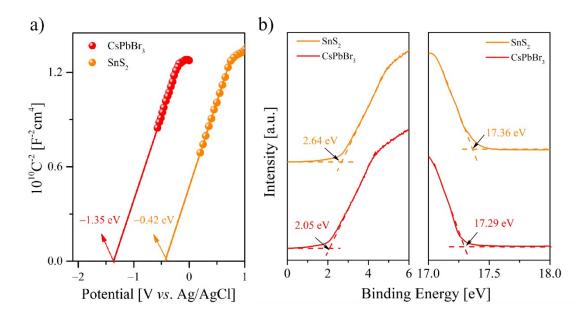


Figure S13 a) The Mott-Schottky plots and b) UPS spectras of SnS_2 nanosheets and $CsPbBr_3$ nanosheets.

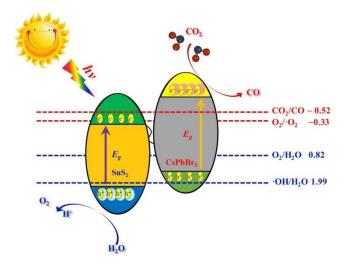


Figure S14 The band alignment of $CsPbBr_3$ nanosheets and SnS_2 nanosheets.

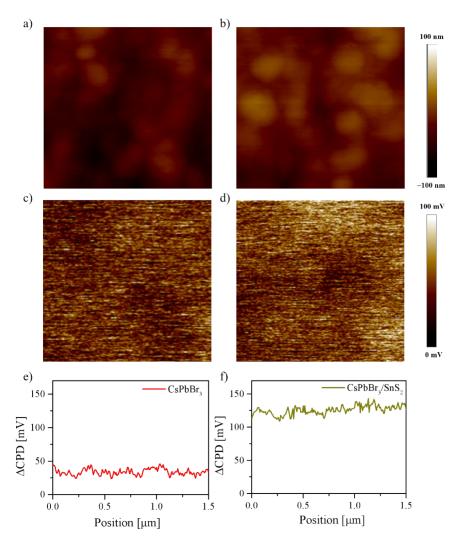


Figure S15 Height images of a) CsPbBr₃ and b) S/C2 heterojunctions. The differential surface photovoltage (SPV) images of c) CsPbBr₃ and d) S/C2 heterojunctions between potential images under illumination. Contact potential difference changes (Δ CPD) of e) CsPbBr₃ and f) S/C2 heterojunctions by subtracting the potential in the dark conditions from that under illumination.

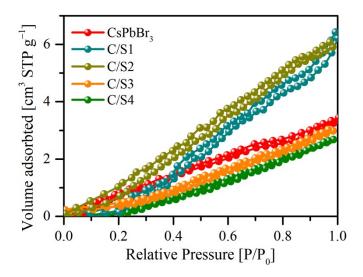
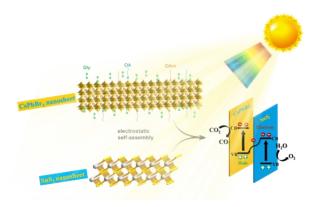



Figure S16 Carbon dioxide adsorption-desorption isotherm (BET) of $CsPbBr_3/SnS_2$ heterojunctions.

Table S1 Multi-exponential fitting parameters for the PL decays of $CsPbBr_3/SnS_2$ heterojunctions (Figure 3d). Excitation at 410 nm and detection at 460 nm.

Smaples	$\tau_1 [ns]$	$\tau_2 [ns]$	τ_3 [ns]	τ _{Ave} [ns]
	(A_1)	(A_2)	(A_3)	
CsPbBr ₃	0.77	3.08	9.56	3.77
	(31.69%)	(46.16%)	(22.15%)	
C/S1	0.48	3.73	25.38	7.80
	(37.98%)	(37.51%)	(24.51%)	
C/S2	1.91	8.45	36.43	19.34
	(15.04%)	(42.54%)	(42.43%)	
C/S3	0.79	5.41	32.88	14.77
	(20.81%)	(41.64%)	(37.55%)	
C/S4	1.11	5.97	28.11	12.75
	(17.72%)	(47.75%)	(34.53%)	

CsPbBr₃/SnS₂ Z-scheme heterojunctions were subtly constructed for visible-light-driven CO₂-to-CO conversion. This dual-nanosheet assembly is bonded via electrostatic attraction and exhibits excellent performance for CO₂ reduction to CO. The atomic-scale proximity in the 2D/2D architecture ensures efficient interfacial Z-scheme charge transfer.