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Text S1. Determination of Transmembrane Energy Barriers for Heavy Metals.
The energy barrier for the permeation (E,, kJ/mol) of heavy metal ions infiltrated

into NF membranes was determined using the Arrhenius relationship.!-?
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Where J; represents solution flux (mol/m?-h); ¢,, and ¢, denote the concentrations of
heavy metals on the membrane surface and effluent (mol/L), respectively. J, is the
pre-exponential indicator; R and T represent the ideal gas constant (8.314 J/mol-K)
and absolute temperature (K), respectively.

The solution flux (J5, mol/m?-h) was calculated using Eq. (S2).
Js=1, %6 (S2)

where J, is the volumetric flux (L/m?-h) and ¢, is the heavy metal concentration
(mol/L). ¢, was taken at the late stages of filtration (permeate volume between 500
and 600 mL) to ensure that the measured J; is a representative case of steady-state
conditions (after the observed breakthrough).

The heavy metal concentration at the membrane surface (c,, mg/L) was
calculated using the stagnant film model (Eq.(S3)), where the longitudinal mass
transport within the boundary layer adjacent to the membrane surface is assumed
negligible,> and hence, the mass transport within the membrane is considered one-
dimensional (perpendicular towards the membrane surface).
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where k,, is the heavy metal mass transfer coefficient from the feed solution towards
the membrane surface (m/s). The mass transfer coefficient depends on the Reynolds
number (that is related to the stirrer speed and system geometry) and the solution
properties (solute diffusivity in water, water density, and viscosity) given in terms of
the Schmidt number.?

The heavy metal observed retention (R,,s) was calculated with Eq. (S4)
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where ¢, and ¢, are the heavy metal concentration (mg/L) in the permeate and
retentate, respectively.

The mass transfer coefficient of heavy metal was calculated based on the
diffusion coefficient in water (D,,), Reynolds number (R,), Schmidt number (S.), and

Sherwood correlation (S#).2
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where dj, is the hydraulic diameter of the flow channel (m), and L is the characteristic

length of the channel (m). L* (m) is the distance from the channel inlet where the

=0.029d,R

velocity profile is completely developed ( e).

Text S2. Determination of MWCO and Pore Size Distribution



The MWCO of the PAM/SA/Mxene membranes was determined by a standard
method of measuring the rejection of neutral molecules, such as glycerol (92 Da),
xylose (120 Da), glucose (180 Da), and sucrose (342 Da), by the membranes. The
aqueous solution of these neutral molecules with a concentration of 200 ppm was
used as feed to pass through the membrane at 4 bar. The rejection of neutral
molecules was calculated according to the concentration of the feed and permeate
qualified by total organic carbon. The MWCO of the membranes was equal to the
molecular weight of the neutral molecule with a rejection of 90%.

With the premise of no steric and hydrodynamic interactions between these
neutral solutes and the pores of the membranes, the corresponding pore size

distribution can be expressed by the probability density function (Eq. (S9)).
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where d, 1s the stokes diameter of the neutral molecules, u, is the mean pore size and
o, 1s the geometric standard deviation of the probability density function curve. The p,
is equals to the d, of the neutral solute with a rejection of 50%. o, represents the
distribution of the membrane pore size, which is the ratio of d, of the neutral molecule
with a rejection of 84.13% to that of 50%. The d, of the neutral solutes is calculated

according to Eq. (S10).
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The pore size range of PAM/SA/Mxene membranes is determined from the
probability density function curve using the data extraction tool (Getdata), where all
pores with probability density greater than 0.01 in the curve are included to determine
the distribution range of pore size from minimum to maximum.
Text S3. Characteristics of [IPN/GO Membrane

Scanning electron microscopy (SEM; QUANTA200, FEI, Netherlands) and
atomic force microscopy (AFM; Dimension ICON, Bruker, Germany) were utilized to
characterize the hydrogel channels and surface morphology of the IPN/GO
membrane.® X-ray photoelectron spectroscopy (XPS; Thermo ESCALAB 250Xi,
Thermo Fisher Scientific, America) and Fourier transform infrared spectroscopy
(FTIR; Bruker Co., Germany) were employed to elucidate the cross-linking
characteristics and chemical composition of the hydrogel layer. Time-of-flight
secondary ion mass spectrometry (TOF-SIMS; ION-ToF GmbH, Germany) was used
for the qualitative assessment of the adsorption levels and distribution of heavy metal
ions within the hydrogel channels.” Additionally, the contact angle and zeta potential
of various IPN/GO gel membranes were measured to elucidate the hydrophilicity and
charge density of the hydrogel channels.
Text S4. Ion Adsorption Test

The ion adsorption performance of the prepared IPN/GO hydrogel membrane
was evaluated through a salt separation process. Before the actual testing, the
hydrogel membrane was compacted for one hour under a pressure of 2 bar to achieve

stable permeability. During the experiment, the transmembrane pressure was



maintained at 4 bar. Filtration adsorption experiments were conducted with 1000 ppm
of CuSO, used individually as the feed solution, with a runtime of 2 hours. After
filtration, the hydrogel membrane was placed in a water environment at 90°C to
dissolve and desorb, and the amount of Cu?* adsorbed was determined by inductively

coupled plasma spectroscopy (ICP, Agilent 5100, Bruke).
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Figure S1. SEM images of IPN and IPN/GO-1, 2, 3, and 4 hydrogel membrane surface.
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Figure S2. AFM images of IPN and IPN/GO-1, 2, 3, and 4 hydrogel membrane surface. a, b, c, d,

and e represent IPN and IPN/GO-1, 2, 3, and 4 hydrogel membranes, respectively.
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Figure S3. XPS spectra of IPN and IPN/GO-2 hydrogel membranes.
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Figure S4. FTIR spectra of IPN and IPN/GO-1, 2, 3, and 4 hydrogel membrane surface.
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Figure S5. The rejection efficiencies of Mg?" and Li* and the selectivity of Mg?*/Li* vary with the

change in the mass ratio of Mg?*/Li* (feed solution salt concentration was 2000 ppm).
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Figure S6. The pure water contact angles of different IPN/GO hydrogel membranes.
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Figure S7. Existing forms of heavy metal ions in the feed solution

using Visual MINTEQ software simulation.



Table S1 Summary of heavy metal recovery efficiency of IPN/GO membrane and previously reported membranes.

Types of heavy  Trans-membrane Recovery Flux
Membrane methods Feed concentration Reference
metals pressure efficiency (LMH/bar)
Zn2+’ Ni2+, Cu2+,
IPN/GO 3 bar 1000 ppm >91.38% 7.82 % This work
Cd?*, and Pb%*
IPN/GO Zn*, Ni**, Cu?,
3 bar 1000 ppm >98.87% 7.82 % This work
(Adjust pH to 11) Cd?**, and Pb**
Co?", Ni?*, Cr?,
MEUF +SDS surfactant 2.8 bar 10 ppm >T79% ~71.43 8
and Zn?*
NF270 Ni?* and Cu?* 5 bar 20 ppm >65% 13.8 0
PAN-NF membrane Ni?* and Cr,O* 10 bar 50 ppm >82.3% 7.18 10
Zn>*, Ni**and 0.495 ppm;0.016
AFC30 15 bar >88.3% 2.33 1

Pb2+

ppm; 0.609 ppm
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1000 ppm
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>55%

>90.50%

94.0%

89.2%

~84%

>80%

>92%

8.75

5.0

1.7

10.9

2.6

~21.0
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Table S2 Physical properties of various heavy metal ions used in this work.

Ton species Hydrated diameter (A) Diffusivity (10 m?-s1)
Zn* 8.60 0.71
Ni2* 8.08 0.68
Cu?* 8.38 0.72
Cd** 8.52 0.87

Pb** 8.02 0.95




