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Figure S1. Initial structural models: (a) Side and top views of CuCoO,/MoQ;; (b) Side and top
views of CuCo0O,/MoS,, CuCo0O,/MoSe,, and CuCoO,/MoTe,.
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Figure S2. Electronic band structures of (a) bulk CuCoO, and monolayer (b) MoO,, (c) MoS,, (d)
MoSe;,, and (e) MoTe,.
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Figure S3. Atomic configurations and layer expansion rates at the interface of (a) CuCoO,/MoO,,

(b) CuCo0O,/MoS,, (c) CuCo0O,/MoSe,, and (d) CuCoO,/MoTe, heterostructures.
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Figure S4. Electron localization function (ELF) cross-sections at the interface of (a) CuCoO,/MoO,,

(b) CuCo0O,/MoS,, (c) CuCo0O,/MoSe,, and (d) CuCoO,/MoTe, heterostructures.
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Figure S5. Three-dimensional spin charge density isosurfaces at the interface of CuCoO,/MoX,

heterostructures.



Table S1. Crystal structure parameters of bulk CuCoO, and MoX, monolayer.

el a,b(A) c(A) Bond length cal. (A)

cal. exp. cal. exp. Cu-O/Mo-X M-O

CuCo0O, 2.896 2.855 16.956 16916 1.839 1.942
MoO, 2.817 / / 2.035 /
MoS, 3.201 3.20°2 / 2413 /
MoSe, 3.286 3.303 / 2.532 /
MoTe, 3.559 3.524 / 2.735 /




Table S2. Band edge positions (vs. SHE) and bandgaps of bulk CuCoO, and MoX, monolayers.

VBMcal. | CBMcal. | Bandgap | VBMcal. | CBMcal. | VBM exp. | CBM exp.
Model (eV) (eV) ref. (eV) ref. (eV) ref. (eV) (eV) (eV)
CuCo0O, 3.12 —0.62 3.741 3.10 —0.60 > 2.36 -1.38!
MoO, 2.269 —-0.151 2426 / / / /
MoS, 1.424 —1.286 2717 1.84 —0.52 8 1.37 —0.54°
MoSe, 0.802 —1.568 2.377 1.18 —0.86 8 0.35 —0.79 10
MoTe, 0.306 —1.584 1.897 0.68 —0.86 3 1.86 —0.81 !




Table S3. Work function, AQ (from the Mulliken population), Electric field (by Ap) direction, and

DFT energy of CuCoO,/MoX; heterostructures and their constituent slabs before contact.

Work function @ Electric field (by
Model AQ of MoX, side /e DFT energy /eV
/eV Ap) direction
CuCo0O, (001) slab
5.456 / / —87771.211
(2 % 2 supercell)
MoO; monolayer (
6.709 / / —11261.689
2 %2 supercell)
MoS, monolayer (
5.864 / / —7633.325
3x43 supercell)
MoSe, monolayer (
5.242 / / —26355.692
V3 x4f3 supercell)
MoTe, monolayer (
4.746 / / —9239.311
3x43 supercell)
CuCo00,/Mo0O, 5.928 0.24 (gain) CuCo0O; to MoO, —99034.641
CuCo0O,/MoS, 5.841 —0.14 (loss) MoS, to CuCoO, —95404.421
CuCoO,/MoSe; 5.553 —1.33 (loss) MoSe; to CuCoO, —114129.004
CuCo0O,/MoTe, 5.059 —1.41 (loss) MoTe, to CuCoO, —97016.887
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