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1. Supplementary Experimental Section
1.1 Recrystallization of AIBN

After heating 100 ml anhydrous ethanol at 70~80 °C, add 10 g AIBN powder to
it, wait for it to dissolve, and preheat the Brinell funnel and suction filter bottle at the
same time. After the AIBN is completely dissolved, it is drained while hot, and the
filtrate is placed in a small beaker and sealed with plastic wrap and placed at low
temperature to recrystallize. Then, the obtained AIBN particles are placed in a surface
dish and baked in a vacuum oven at 60 °C for 1 h. Subsequently, the AIBN is loaded

into brown bottles and transferred to the glove box for later use.
1.2 Coin cell assembly

To prepare the composite cathode, LiCoO, (LCO, 1 C = 160 mAh g
1)/LiNij 5C0¢,Mng 30, (NCM 532, 1 C =170 mAh g!)/LiFePO4LFP, 1 C= 160 mAh
g)(used as an active material), super P (used as a conductive agent), and poly
(vinylidene fluoride) (used as a binder) are mixed in N-methylpyrrolidone at a mass
ratio of 8:1:1. The resulting paste is applied to the Al foil using a scraper coating
method, then dried in a blast drying oven at 60 °C, and then transferred to a vacuum
drying at 120 °C for 12 hours. After manufacturing, the electrodes are cut into 12 mm
diameter discs and stored in a glove box before use. The loading of cathode active
materials for LCO, LFP and NCM532 is approximately 1.5 mg cm2. SiO500 electrodes
were prepared by mixing Si0500, super P and polyacrylic acid in a mass ratio of 8:1:1
in ultrapure water. The prepared slurry is cast onto Cu foils and dried at 120 °C under
vacuum for more than 12 h in vacuum to prepare 14 mm diameter discs with anode
loading of 1.3 mg cm™ and stored in a glove box before use. A 1Ah pouch cell is used,
with 3 g of electrolyte injected per Ah. The formation process includes gas release and
resealing, resulting in a battery with an electrochemical window of 3 to 4.4 V. After
cycling the soft-pack battery 10 times, perform folding, shearing, crushing, and needle-

puncture tests at a voltage of 4.4V.



1.3 Characterization

Cycled LCO electrode morphology and microstructure are examined using
scanning electron microscopy (SEM, Hitachi S4800), transmission electron microscope
(TEM, FEI-TALOS-F200X) and selected area electron diffraction (SAED). The
morphology of Li deposited on copper foil is observed by scanning electron microscopy
(SEM, Hitachi S4800). The chemical composition of the cyclic electrode is obtained by
X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi spectrometer). In-situ XRD
measurements are conducted using a Rigaku Smartlab diffractometer equipped with a
Cu Ka radiation source (A = 0.154 nm). The measurements are performed in the 26
range of 10° to 80° to analyze the crystal structures of the prepared materials during
battery cycling. The in-situ battery is cycled at a rate of 0.15 C within a voltage window
of 3.0-4.4 V. The battery is assembled in a coin cell configuration, consisting of an
external protective casing, LCO cathode electrode, separator, lithium anode, and a
spring to maintain contact during cycling. The glass transition temperature of the
electrolyte is detected by differential scanning calorimetry (DSC), and the rate of 10°C
min! is carried out from -80 °C to 120 °C. FTIR spectra acquired on an infrared
spectrometer (Beijing Scistar Technology) underwent analysis. In situ ATR-FTIR
measurements utilized an FTIR spectrometer (INVENIO S) with an extended-range
Germanium ATR accessory. All spectra are collected at 16 scans per spectrum with a
resolution of 4 cm™!. For in situ FTIR testing of LCO cathodes, a mixture of 80% active
material, 10% super P, and 10% polytetrafluoroethylene (PTFE) is pressed onto
stainless steel meshes (¢16.5 mm). The in-situ optical microscopy is taken with a high-
definition digital electronic measurement microscope, using a mold purchased from
Beijing Scistar Technology Co, LTD. TG characterization is performed using TA
Instruments Q50 TGA from ambient temperature to 800 °C at a heating rate of 10 °C

min,
1.4 Electrochemical characterization

Assembled in argon-filled glovebox with ultra-low water and oxygen levels (<0.01

ppm), CR2032 coin cells underwent testing. Each cell received 80 pL electrolyte and



underwent charge/discharge measurements at 25°C using the Neware battery testing
system. The electrochemical performance of Li/SPE/LCO batteries, Li/SPE/LFP
batteries and Li/SPE/NCMS532 batteries are evaluated at constant current at a cutoff
voltage of 3-4.4V, 2.5-4.2V and 3-4.4V (relative to Li/Li") using the Neware battery
test system. In order to evaluate the compatibility of the electrolyte with the silicon-
based negative electrode, the electrochemical performance of the SiO500/SPE/Li
battery is evaluated and under constant current. The cut-off voltage of Li/graphite
battery is 0.01 V-2 V, which is activated at 0.05C rate and then cycled at 0.1 C for a
long time. To evaluate rate performance, Li/SPE/LCO batteries are tested at 0.1C, 0.2C,
0.3C, 0.5C, 1C, and 0.1C rates, while Li/SPE/LFP batteries are tested at 0.1C, 0.5C,
1C, 2C, 3C, and 0.1C rates, and the S10500/SPE/Li battery at 0.02C, 0.05C, 0.1C, 0.2C,
and 0.02C rates. All the test temperatures are 25+0.5 °C. The electrochemical window
of prepared electrolytes is assessed using LSV, employing stainless steel (SS) as the
working electrode and Li foil as both reference and counter electrodes. Li/SS battery
LSV measurement at 0.5 mV/s, from 0 V to 6 V, is conducted. Cyclic voltammetry
(CV) tests are performed at a scan rate of 0.04 mv/s in the range of 3-4.4V. In addition,
electrochemical impedance spectroscopy (EIS) measurements are performed on all
cells using the same Bio-Logic VMP 3 workstation. The frequency range of the EIS
test is 0.1 Hz to 7 MHz, with a disturbance voltage of 10 mV applied. The ionic
conductivity of the electrolyte is determined by performing EIS tests on stainless
steel/stainless steel symmetric batteries at a variety of temperatures ranging from 25 °C
to 90 °C. The high frequency semicircle region represents the Li* transport process
through the SEI, and the intermediate frequency region represents the charge transfer
process. The ionic conductivity value is calculated according to Eq (1):

L
o=——

where o represents the ionic conductivity, L represents the thickness of the electrolyte,

R, is the Ohmic resistance, and S is the area of the stainless steel.

The Bruce-Vincent-Evans method, combined with the chronometric current

method and EIS measurement, is used to test the Li/Li symmetrical battery at 25 °C to



determine the migration number of Li" ions. The equation Eq (2) is used to calculate:

I(AV - 1;R))

TV - LR )

Li

Where AV is the applied voltage, /) and Igs are the initial and steady-state current values
of the timing measurement process, respectively. Ry and Rgg are charge transfer
resistors before and after polarization, respectively.

For Li/Cu cells, the effective area of the Cu foil disc (diameter 1.4 cm) for Li
deposition was 2.01 cm?. CE cycling measurements were conducted in Li/Cu half cells.
The Cu surface was conditioned by plating 1 mA h cm™ of Li and stripping to 1 V at
0.1 mA cm. Subsequently, a Li reservoir of 0.2 mA h cm? was plated onto Cu,
followed by 10 cycles of Li plating and stripping at 0.2 mA h cm? and 0.1 mA cm™.
Finally, all Li on Cu was stripped to 1 V at 0.1 mA c¢cm™. For long-term cycling, Li/Cu
cells cycled at a current density of 0.1 mA cm™ at 0.2 mA h cm™, were plated with a
desirable Li capacity and stripped back by using a cut-off voltage of 1 V (vs. Li/Li").
This CE was calculated by using this Eq (3):

oo (Qs+Q.xn)

(@, + Q. xn) 3)

where QO is the final stripping capacity, O, is the initial plating capacity, Qc is the

constant plating/stripping capacity for each cycle, and 7 is the cycle number.
1.5 Theoretical calculations

DFT calculations are carried out using Gaussian16 software. The equilibrium state
structures are optimized using the B3LYP functional with the 6-311+G (d, p) basis set.
The electrostatic potential, binding energy, and the highest occupied molecular orbital
(HOMO) and lowest unoccupied molecular orbital (LUMO) are analyzed. The
molecules are optimized using the ESP charges after ultrafine optimization. The
binding energy (Eb) between the solvent/anion and cation is defined as follows Eq (4):
Ey=Ei o~ Epi-Es )]

where E ., is the total energy of solvent/anion with coordinated Li, E;; is the single-

point energy of Li, Ej is the single-point energy of solvents/anion.






2. Supporting Figures
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Fig.S1 Impedance spectra with different VC contents and PEVEC SPE at 30-90 °C.
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Fig.S2 Arrhenius curve with different VC content.
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Fig.S5 The (a) 'H NMR and (b) 3C NMR spectrum of PEVC.
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Fig.S6 The 'H NMR spectrum of PEVEC.
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Fig.S7 Structures and binding energies of PDEM, VEC and VC calculated by DFT.
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Fig.S8 CV curves using Li/SS cells at a scan rate of 0.1 mV s'! of P-PDEM, PEVEC
and PEVC electrolytes.
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Fig.S9 Comparison of polarization voltages of Li/Li symmetrical batteries with P-
PDEM, PEVC and PEVEC electrolytes.
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after different cycles.
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Fig.S11 Coulombic efficiency test of Li/Cu cells. (0.1 mA ¢m with a capacity of 0.1
mAh cm?).
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Fig.S12 Charge- discharge profiles and cycling performance of Li/LFP cells with
three electrolytes at 25 °C.

Fig.S13 SEM image of LFP cathode after 650 cycles of Li/LFP battery.
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Fig.S14 Charge- discharge profiles and cycling performance of Li/LCO cells with
three electrolytes at 25 °C.
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Fig.S16 SEM image of lithium metal anode (top) and LCO cathode (bottom) after 150
cycles of Li/LCO battery.
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three electrolytes at 25 °C.
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Fig.S20 Capacity-voltage profile of SiO500/Li battery.
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Fig.S22 SEM image of Si0500 anode after 200 cycles of SiO500/Li battery.
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Fig.S28 XPS curves of Ols, Lils, N1s and Bls in lithium metal anode of a Li/LCO
battery with 100 cycles of P-PDEM, PEVEC and PEVC polymer electrolytes.
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Fig.S29 XPS curves of Ols, Lils, N1s and Bls in LCO cathode of a Li /LCO battery
with 100 cycles of P-PDEM, PEVEC and PEVC polymer electrolytes.
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Fig.S30 Atomic ratios of SEI films correspond to XPS spectra in P-PDEM, PEVEC,
and PEVC.
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Fig.S31 Atomic ratios of CEI films correspond to XPS spectra in P-PDEM, PEVEC,
and PEVC.



3. Supporting Tables

Table S1. Impedance values of PEVEC, PEVC, and P-PDEM electrolytes after

different cycle numbers.

Electrol
yte PEVEC PEVC P-PDEM

system

Cycle Ry, Rsgi R Ry, Rsgx Rt Rb Rsgr R
number | (€2) | () | () | () | () | ) | @) | @ | @

0 11.15 | 7.85 | 62.56 | 14.55 | 79.71 | 24.47 | 12.88 | 24.80 | 129.7

3 11.39 | 6.81 | 58.70 | 15.69 | 14.6 | 52.14 | 13.57 | 21.20 | 130.0

10 11.89 | 586 | 5532 | 15.16 | 6.07 | 69.03 | 13.89 | 19.54 | 101.1

50 1131 | 6.15 | 40.19 | 1585 | 7.90 | 49.94 | 14.08 | 18.49 | 105.7

100 12.24 | 4.01 | 42.66 | 16.09 | 7.17 | 50.76 | 14.09 | 24.12 | 94.09

300 11.77 | 3.20 | 42.51 | 159 | 5487 | 4291 | 14.16 | 21.65 | 86.52




Table S2. In-situ impedance values of the battery during charge-discharge with PEVC

electrolyte.
Voltage
OCV [36V |37V 38V 39V [40V [41V 42V 43V |44V
rises
Ry
-- 120.88 | 18.88 | 14.97 | 12.76 | 10.95 | 10.95 | 10.94 | 11.22 | 11.96
(9]
Rsgr
-- | 4.565 6 6.909 | 84.95 | 86.46 | 86.08 | 4.458 | 51.66 | 45.33
)
Rct
-- | 85.04|79.86 | 68.51 |43.03 | 6.11 | 10.42 | 75.88 | 33.88 | 22.31
(€8]
Voltage
drops 35V [3.6V (3.7V |38V 39V |40V 41V 42V 43V |44V
Ry
13.17 | 11.68 | 12.87 | 11.33 | 11.88 | 11.59 | 11.87 | 11.93 | 12.11 | 11.96
(€8]
Rsgr
89.84 | 77.0 |92.42 | 1249 | 1353 | 122.3 | 103.9 | 93.38 | 47.83 | 45.33
(0]
Ret
6.146 | 63.17 | 6.1 | 21.5 |24.18 |37.79 | 20.0 | 13.57 | 25.93 | 22.31
(9]




Table S3. In-situ impedance values of the battery during charge-discharge with PEVEC

electrolyte.
Voltag
e OC | 3.6 37V 3.8 39 | 4.0 4.1 4.2 4.3 4.4
\Y% A% A% \Y% v \% A% A% \Y%
rises
R
b 3 1(4)1.7 10.32 1(;.2 1(;.5 1(:3.9 12.1 1;.2 113 113.4
(9]
RsEr 1.56 | 0.900 | 31.2 | 334 | 35.1 343 | 339 | 347
- 2 5 2 4 4 |2 3 3 1
(9]

Ret 32.2 34.57 217 | 169 | 12.0 | 12.1 | 12.7 | 12.2 | 20.0
Q) 8 7 6 4 5 5 8 2
Voltag 37 | 3.8 | 3.9 4.0 4.1 4.2 4.3

34V | 35V | 36V
e drops \% \% \% \% \% \% \%
R
b 136.2 12.2 132 | 118 12;;.2 12.6 12.5 12.6 12.0 112.5
()
R
SEI 8.618 8.;)9 7,005 30.5 13.5 662.0 65.7 656.0 70.2 34;.9
Q) 5 5
R,
t 48.2 | 49.5 5092 | 53.4 46.7 | 95.7 | 62.8 617 68.4 | 23.5
(9) 2 9 3 9 2 3 7




Table S4. In-situ impedance values of the battery during charge-discharge with P-

PDEM electrolyte.
Voltage
OCV [36V |37V 38V 39V [40V [41V 42V 43V |44V
rises
Ry
-- 16.07 | 1596 | 17.00 | 16.67 | 16.54 | 16.43 | 16.4 | 16.37 | 16.43
(9]
Rsgr
-- | 25.05| 9.24 | 4.948 | 54.01 | 61.39 | 61.46 | 60.96 | 59.69 | 56.92
)
Rct
-- 18.8 | 46.82 | 39.64 | 37.87 | 15.64 | 13.18 | 13.32 | 17.39 | 31.14
(€8]
Voltage
drops 3.4V | 35V (3.6V 3.7V 38V |39V 40V 41V 42V |43V
Ry
17.00 | 16.5 | 16.62 | 17.65|17.59 | 17.93 | 17.81 | 18.08 | 19.25 | 16.4
(€8]
Rsgr
70.69 | 49.32 | 53.75 | 6.426 | 51.4 | 47.56 | 44.88 | 48.3 | 57.95 | 53.51
(0]
Ret
6.00 | 18.09 | 14.26 | 60.27 | 12.59 | 3.756 | 5.274 | 3.838 | 3.321 | 34.32
(9]




Table SS. Comparison of Li/LFP cell performance in this work with typical solid

electrolytes in literature.

Capacity
Electrolytes Tem(lzc:;nure Rate  Cycle retention  Ref.

rate (%)
PNPU/PVDF-HFP 30 0.2 300 90 !
PAN/LLZTO 60 0.5 190 93.6 2
PEO/SN/MOF framework 55 0.5 600 85.7 3
PEO/ Ca-PO4-CO;s 60 0.2 450 98 4
nanowires
PVDF/PPC 30 0.2 100 69.2 3
PVDEF/h-BN nanosheets 60 0.2 170 96 6
PVDF-HFP/LALZO/h-BN 55 0.2 100 92 7
PEO/Aramid nanofibers 60 0.1 180 78 8
PEGMA/3-BMP 60 0.1 60 94.5 ?
PVDEF/SiO,/LLTO 25 0.5 100 95 10
PAN/ZIF-8 nanofiber 25 2 500 86.66 1
PMBA/GF/DEE 30 1 600 83.7 12
PL/LILZO nanofibers 60 0.5 400 80 13
PEO/MEMO/LLZTO- 60 1 200 90.9 14

This work 25 0.5 1000 93.73




4. Supporting Videos

Video S1. Video (accelerated 100x) showing the stripping process of a Li/Li battery in
PEVEC electrolyte under a 90 pA current.

Video S2. Video (accelerated 100x) showing the stripping process of a Li/Li battery in
PEVEC electrolyte under a 90 pA current.

Video S3. Video (accelerated 100x) showing the stripping process of a Li/Li battery in
PEVEC electrolyte under a 90 pA current.



Video S4. Pouch cell puncture test.

Video S5. Pouch cell squeeze test.
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