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Photograph of the MXene electrode directly printed on a
polyimide (PI) substrate.

Adhesion test of the MXene electrode on the PET substrate
using the tape-peeling method.

Ti 2p XPS spectra of MXene electrodes immediately after
printing and after ambient storage for three days.

FTIR spectra of pure PAAm hydrogel and PAAm hydrogel
containing redox ion pairs.

EIS spectra of the device at 0, 1, and 6 h. (b) EIS spectrum at
12 h.

Time-dependent voltage response to various temperature
gradients for (a) freshly prepared and (b) after 8 hours of
ambient exposed PITH device. Thermopower fitting of the
PITH device: (c) freshly prepared device and (d) device after
8 h of ambient exposure.

Photograph of the fully dehydrated PITH device after
storage under ambient conditions for four days.

(a) Photograph of the electrical conductivity measurement
using a four-point probe. (b) Variation of the electrical
resistance (R) of the MXene electrode as a function of
bending cycles.

Boxplot of voltage responses of the PITH under transient
touch and prolonged touch.

Photographs demonstrating the PITH device attached to a
gloved finger during the handwriting of different letters.
Voltage response curves of handwritten digit “0” under (a)

no-temperature-gradient and (b) temperature-gradient



conditions. (¢) Comparison of recognition accuracies for
digit handwriting with and without a temperature gradient.
Supplementary Table S1  Resistance of the printed MXene electrodes under different
bending cycles.
Supplementary Table S2  Comparison of the sensing performance between our PITH
device and previously reported self-powered thermogalvanic

sensors.

Video S1. Direct ink writing (DIW) printing process of interdigital MXene electrodes
on a flexible PET substrate, demonstrating the continuous extrusion and pattern
fidelity of the MXene ink during electrode fabrication.

Video S2. Appearance and fluidity of the MXene ink, illustrating its homogeneous
dispersion and suitable rheological properties for direct ink writing.

Video S3. Manual stretching and mechanical deformation of the PAAm hydrogel,
demonstrating its high flexibility, elasticity, and mechanical robustness under tensile

strain.
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Figure S1. Photograph of the MXene electrode directly printed on a polyimide (PI)

substrate.



Figure S2. Adhesion test of the MXene electrode on the PET substrate using the tape-

peeling method.
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Figure S3. Ti 2p XPS spectra of MXene electrodes immediately after printing and

after ambient storage for three days.



—— PAAmM PAAmM-FeCN

Transmittance (a.u.)

2400 2000 1600 1200 800
Wavenumber (cm™)

Figure S4. FTIR spectra of pure PAAm hydrogel and PAAm hydrogel containing

redox ion pairs.
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Figure S5. EIS spectra of the device at 0, 1, and 6 h. (b) EIS spectrum at 12 h.
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Figure S6. Time-dependent voltage response to various temperature gradients for (a)
freshly prepared and (b) after 8 hours of ambient exposed PITH device. Thermopower
fitting of the PITH device: (¢) freshly prepared device and (d) device after 8 h of

ambient exposure.



Dehydrated PITH

Figure S7. Photograph of the fully dehydrated PITH device after storage under

ambient conditions for four days.
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Figure S8. (a) Photograph of the electrical conductivity measurement using a four-
point probe. (b) Variation of the electrical resistance (R) of the MXene electrode as a

function of bending cycles.

11



] Tap
L] Hold
05!
S
£
% 0-0 | %
O
©
= _0.5}
10 Tap Hold

Figure S9. Boxplot of voltage responses of the PITH under transient touch and

prolonged touch.
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Figure S10. Photographs demonstrating the PITH device attached to a gloved finger

during the handwriting of different letters.
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Figure S11. Voltage response curves of handwritten digit “0” under (a) no-
temperature-gradient and (b) temperature-gradient conditions. (¢) Comparison of

recognition accuracies for digit handwriting with and without a temperature gradient.
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Table S1. Resistance of the printed MXene electrodes under different bending cycles.

Bending cycles R () ¢ (Scm™)
0 3.1 2932.6
50 4.2 2164.5
100 4.2 2164.5
200 3.7 2457.0

500 4.1 2217.3
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Table S2. Comparison of the sensing performance between our PITH device and

previously reported self-powered thermogalvanic sensors.

Device

Respons

Device Materials Sensm.g configurati e time thermopow Ref.
modality er (mV K1)
on (ms)
PVA/PD  Photo- Flexible
Gel Patch MS + thermal-  PTE gel 500 1.46 !
Fe?3*  electric patch
PVA/EG  Thermal
Antifreez + energy Sandwich
A 1.4 2
ing Gel Fe(CN)g*  harvestin  structure N 3
/4-
g
Finerti PVA +  Pressure nMel(;:ra(;[zlatter
R Fe(CN) & o 80 1.89 3
eceptor . Thermal ~ &2dien
structure
PAM +
TGHE-  LiCl+ (Tshiernn;talr Sandwich . )
Skin Fe(CN)g* BN structure '
/4- e)
PVA/Gela Thermal  Gel-
Smart tin + & wrapped
1 2. 3
Pen Fe(CN)g*-  Piezoresis pen 30 05
4 tive structure
TGH PVAJ/rAgar Thermal  Concave-
Biometri A 1. 6
Array Fe(CN)e- (Biometri arranged N/ 50
. c) array
PAAm+ Thermal- Planar This
PITH Fe(CN)g*-  strain interdigitat 390 1.44 work
4 coupled ed

*The corresponding full name for abbreviation in the table as follows.

PVA: poly(vinyl alcohol), PDMS: polydimethylsiloxane, EG: ethylene glycol, PAM:

polyacrylamide, TGH: thermogalvanic hydrogel
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