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1. SHAP interpretation of the distal pathway (Path 1) ML model.

Fig. S1. SHAP summary plot of the MLP model for the distal pathway (Path 1): (a) 

ΔG*N2, (b) ΔG*NNH, (c) ΔG*NNH2, (d) ΔG*N, (e) ΔG*NH, (f) ΔG*NH2 and (g) 

ΔG*NH3.



2. The Prediction of six machine learning models for the distal pathway (Path 1) 

Fig. S2. The machine learning models were used to predict the adsorption free energy 

in the first hydrogenation step of the distal pathway (Path 1): (a) GBR, (b) ABR, (c) 

BAGR, (d) XGB, (e) MLP, and (f) SVR.



3. AIMD simulation results for the distal pathway (Path 1)

Fig. S3. AIMD simulations of PdW–C₂N (a, d), WW–C₂N (b, e), and CoMo–C₂N (c, f) 

at 300 K and 500 K (50 ps, 1 fs step). All systems exhibit stable energy fluctuations and 

intact structures, confirming their thermal robustness as catalytic sites.



4. The Prediction of six machine learning models for the alternating pathway 
(Path 2)

Fig. S4. Fitting and prediction results of all six machine learning models—(a) MLP, (b) 

GBR, (c) XGR, (d) SVR, (e) BAGR, (f) ABR on the alternating pathway dataset (Path 

2), with performance comparison.



5. The Prediction of six machine learning models for the enzymatic pathway (Path 
3)

Fig. S5. Fitting and prediction results of all six machine learning models—(a) MLP, (b) 

GBR, (c) XGR, (d) SVR, (e) BAGR, (f) ABR on the enzymatic pathway dataset (Path 

3), with performance comparison.



6. Comparison between DFT-calculated and MLP-predicted for the alternating 

pathway (Path 2)

Fig.S6. Comparison between DFT-calculated and MLP-predicted ΔG values for the 

alternating pathway (Path 2): (a) ΔG*NN, (b) ΔG*NNH, and (c) ΔG**NH₃. The sub-

figures display the optimized geometries of the corresponding reaction intermediates 

involved in the alternating pathway.



7. Comparison between DFT-calculated and MLP-predicted for the enzymatic 

pathway (Path 3)

Fig.S7. Comparison between DFT-calculated and MLP-predicted ΔG values for the 

distal pathway (Path 3): (a) ΔG*NN, (b) ΔG*NNH, and (c) ΔG**NH₃. The sub-figures 

display the optimized geometries of the corresponding reaction intermediates involved 

in the enzymatic pathway.



8. Error analysis of MLP model

Fig. S8. Error distribution of the top 20 metal combinations with the largest MLP model 

error.



Fig. S9. MLP model error histogram 



Fig.S10. Error distribution of MLP model by periodic.



Fig.S11. Error distribution of MLP model by group.



Fig.S12. Principal component analysis of initial data set



Fig.S13. The fitting effect of the structure after MAMB replacement in the initial data 
set.



9. The detailed thermodynamic corrections and Gibbs free energies under both 

PBE and PBE+U.

Table S1. Zero-point energies and entropy correction values of species in the gas 

phase and adsorbed on the Pd-W @C₂N catalyst (PBE), used to describe the distal 

pathway of electrochemical nitrogen reduction to ammonia on this catalyst.

Name E /eV EZPE/eV TS/eV G/eV
Pd–W@C2N -325.95249 0 0 -325.95249   

*NN -342.60573 0.50724 0.63399 -342.73248 
*NNH -346.43342 0.97631 1.01877 -346.47588 
*NNH2 -350.68853 1.25861 1.03270 -350.46262 

*N -334.63767 0.34346 0.06301 -334.35722 
*NH -338.06459 1.03354 0.62614 -337.65719 
*NH2 -342.00134 1.68443 0.41045 -340.72736 
*NH3 -345.16821 1.47817 0.97739 -344.66743 



Table S2 Zero-point energies and entropy correction values of species in the gas 

phase and adsorbed on the W-W @C₂N catalyst (PBE), used to describe the distal 

pathway of electrochemical nitrogen reduction to ammonia on this catalyst.

Table S3 Zero-point energies and entropy correction values of species in the gas 

phase and adsorbed on the Co-Mo @C₂N catalyst (PBE), used to describe the distal 

pathway of electrochemical nitrogen reduction to ammonia on this catalyst.

Name E /eV EZPE/eV TS/eV G/eV
W–W@C2N -329.73065 0 0 -346.45065 

*NN -346.96716 0.80412 0.28754 -346.45058
*NNH -349.59703 0.73043 1.11369 -349.98029
*NNH2 -354.12377 1.34717 1.31401 -354.09061

*N -339.03926 0.32891 0.19533 -338.90568
*NH -342.81529 0.76427 0.44462 -342.49564
*NH2 -346.8983 1.69425 0.71166 -345.91571
*NH3 -349.01547 1.29234 1.07263 -348.79576

Name E /eV EZPE/eV TS/eV G/eV
Co–Mo@C2N -327.70296 0 0 -327.70296

*NN -345.44309 0.42992 0.55978 -345.57295
*NNH -348.76964 1.16321 0.79651 -348.40294
*NNH2 -352.17425 1.15427 0.86291 -351.88289

*N -336.62397 0.18953 0.18355 -336.61799
*NH -340.74512 0.95221 0.50505 -340.29796
*NH2 -345.19159 1.52588 0.5623 -344.22801
*NH3 -347.56132 1.36741 0.80353 -346.99744



Table S4 Zero-point energies and entropy correction values of species in the gas 

phase and adsorbed on the Pd-W @C₂N catalyst (PBE+U), used to describe the distal 

pathway of electrochemical nitrogen reduction to ammonia on this catalyst.

Name E /eV EZPE/eV TS/eV G/eV
Pd–W@C2N -322.85594 0 0 -322.85594   

*NN -339.24819 0.36521 0.46281 -339.34579
*NNH -343.24723 0.66630 0.70295 -343.28388
*NNH2 -347.28685 0.93148 0.69191 -347.04728

*N -331.52551 0.24024 0.04726 -331.33253
*NH -334.81916 0.75427 0.43830 -334.50319
*NH2 -338.78652 1.11164 0.29552 -337.97041
*NH3 -341.75104 1.04947 0.64508 -341.34665



Table S5 Zero-point energies and entropy correction values of species in the gas 

phase and adsorbed on the W-W @C₂N catalyst (PBE+U), used to describe the distal 

pathway of electrochemical nitrogen reduction to ammonia on this catalyst.

Table S6 Zero-point energies and entropy correction values of species in the gas 

phase and adsorbed on the Co-Mo @C₂N catalyst (PBE+U), used to describe the 

distal pathway of electrochemical nitrogen reduction to ammonia on this catalyst.

Name E /eV EZPE/eV TS/eV G/eV
W–W@C2N -326.59821 0 0 -326.59821

*NN -343.56688 0.56283 0.20990 -343.21395
*NNH -346.38045 0.52565 0.74617 -346.60097
*NNH2 -350.68878 0.91604 0.98551 -350.75825

*N -335.88629 0.24342 0.13673 -335.7796
*NH -339.52436 0.50441 0.31568 -339.33563
*NH2 -343.63746 1.16907 0.46970 -342.93809
*NH3 -345.52532 0.91764 0.72939 -345.33707

Name E /eV EZPE/eV TS/eV G/eV
Co–Mo@C2N -324.58978 0 0 -324.58978

*NN -342.05775 0.30094 0.41424 -342.17105
*NNH -345.52377 0.83750 0.53367 -345.21994
*NNH2 -348.75816 0.78486 0.64718 -348.62048

*N -333.45937 0.13838 0.12849 -333.44948
*NH -337.47395 0.62845 0.36869 -337.21419
*NH2 -342.01483 1.08342 0.38236 -341.31377
*NH3 -344.12046 0.94316 0.57051 -343.74781





10. The parameters of six machine learning models

According to the given scope of the parameters search, the best parameter 
combination can be obtained through GridSearchCV. 

Table S7 
The optimal hyperparameters of the MLP model (ΔG*NN).

models The scope of theparameters search Best parameters

XGB

n_estimators =
[50, 100, 150, 200]
learning_rate =
[0.01, 0.05, 0.1, 0.2]
max_depth =
[3, 5, 7, 9]
subsample =
[0.5, 0.7, 1.0]
colsample_bytree =
[0.5, 0.7, 1.0]
random_state =
[0, 2, 5, 10]

{'n_estimators': 100,
'learning_rate': 0.1,

'max_depth': 5,
'subsample': 1.0,

'colsample_bytree': 1.0,
'random_state': 0}

SVR

gamma = 
[0.001, 0.01, 0.02, 0.05, 0.08, 0.1, 0.2, 0.3, 0.5, 0.8, 
1, 5, 8]
epsilon = 
[0.01, 0.05, 0.1, 0.5, 1, 5, 8]

{'epsilon': 0.1,
'gamma': 0.001}

MLP

hidden_layer_sizes =
[(50,), (100,), (50, 50), (100, 50), (100, 100)]
activation =
['relu', 'tanh']
solver =
['adam', 'sgd']
alpha =
[0.0001, 0.001, 0.01]
learning_rate_init =
[0.001, 0.01, 0.1]
random_state =
[0, 1, 2, 5]

{'hidden_layer_sizes': 
(100,),

'activation': 'relu',
'solver': 'adam',
'alpha': 0.0001,

'learning_rate_init': 
0.001,

'random_state': 1}

GBR

n_estimators =
[10, 20, 40, 60, 80, 100, 150, 200]
learning_rate =
[0.001, 0.003, 0.005, 0.01, 0.03, 0.05, 0.1]
max_depth =
[1, 2, 3, 4, 5]
loss =
['squared_error', 'absolute_error', 'huber']
random_state =
[0, 2, 5, 10, 20, 30]

{'n_estimators': 50,
'learning_rate': 0.1,

'max_depth': 3,
'loss': 'huber',

'random_state': 0}

ABR

n_estimators = 
[10, 30, 50, 60, 70, 
80, 90, 100, 125, 150],
learning_rate = 
[0.001, 0.008, 0.01, 0.02, 0.03, 0.04, 0.05, 0.08, 

{'learning_rate':0.1,
'n_estimators': 125,
'random_state': 0}



0.09, 0.1],
random_state = 
[0, 5, 10, 15, 20, 30]

BAGR

n_estimators = 
[2, 5, 8, 10, 20, 30, 40, 
50, 60, 80, 100, 150, 200]
random_state = 
[0, 2, 5, 10, 15, 20, 30]

{‘n_estimators’:150,
‘random_state’:2}

Table S8 
The optimal hyperparameters of the MLP model (ΔG*NNH).

models The scope of theparameters search Best parameters

XGB

n_estimators =
[50, 100, 150, 200]
learning_rate =
[0.01, 0.05, 0.1, 0.2]
max_depth =
[3, 5, 7, 9]
subsample =
[0.5, 0.7, 1.0]
colsample_bytree =
[0.5, 0.7, 1.0]
random_state =
[0, 2, 5, 10]

{'n_estimators': 121,
'learning_rate': 0.3,

'max_depth': 3,
'subsample': 1.0,

'colsample_bytree': 1.0,
'random_state': 40}

SVR

gamma = 
[0.001, 0.01, 0.02, 0.05, 0.08, 0.1, 
0.2, 0.3, 0.5, 0.8, 1, 5, 8]
epsilon = 
[0.01, 0.05, 0.1, 0.5, 1, 5, 8]

{'epsilon': 0.001,
'gamma': 0.3}

MLP

hidden_layer_sizes =
[(50,), (100,), (50, 50), (100, 50), (100, 100)]
activation =
['relu', 'tanh']
solver =
['adam', 'sgd']
alpha =
[0.0001, 0.001, 0.01]
learning_rate_init =
[0.001, 0.01, 0.1]
random_state =
[0, 1, 2, 5]

{'hidden_layer_sizes': 
(130,),

'activation': 'relu',
'solver': 'adam',
'alpha': 0.0003,

'learning_rate_init': 
0.002,

'random_state': 33}

GBR

n_estimators = 
[10, 20, 30, 40, 50, 60, 70, 80, 
90, 100, 125, 150, 175, 200],
random_state = [0, 5, 10, 20, 30],
learning_rate = 
[0.001, 0.003, 0.005, 0.008, 0.01, 
0.03, 0.05, 0.08, 0.1],
max_depth = [1, 2, 3, 4, 5],
loss = ['huber']

{'learning_rate': 0.02,
'loss': 'huber',

'max_depth': 4,
'n_estimators': 125,
'random_state': 0}

ABR
n_estimators = 
[10, 30, 50, 60, 70, 

{'learning_rate': 0.05,
'n_estimators': 10,



80, 90, 100, 125, 150],
learning_rate = 
[0.001, 0.008, 0.01, 0.02, 0.03, 
0.04, 0.05, 0.08, 0.09, 0.1],
random_state = 
[0, 5, 10, 15, 20, 30]

'random_state': 15}

BAGR

n_estimators = 
[2, 5, 8, 10, 20, 30, 40, 
50, 60, 80, 100, 150, 200]
random_state = 
[0, 2, 5, 10, 15, 20, 30]

{‘n_estimators’:8,
‘random_state’:5}

Table S9 

The optimal hyperparameters of the MLP model (ΔG*NH3).

models The scope of theparameters search Best parameters

XGB

n_estimators =
[50, 100, 150, 200]
learning_rate =
[0.01, 0.05, 0.1, 0.2]
max_depth =
[3, 5, 7, 9]
subsample =
[0.5, 0.7, 1.0]
colsample_bytree =
[0.5, 0.7, 1.0]
random_state =
[0, 2, 5, 10]

{'n_estimators': 100,
'learning_rate': 0.5,

'max_depth': 7,
'subsample': 1.0,

'colsample_bytree': 1.0,
'random_state': 32}

SVR

gamma = 
[0.001, 0.01, 0.02, 0.05, 0.08, 0.1, 
0.2, 0.3, 0.5, 0.8, 1, 5, 8]
epsilon = 
[0.01, 0.05, 0.1, 0.5, 1, 5, 8]

{'epsilon': 0.1,
'gamma': 0.001}

MLP

hidden_layer_sizes =
[(50,), (100,), (50, 50), (100, 50), (100, 100)]
activation =
['relu', 'tanh']
solver =
['adam', 'sgd']
alpha =
[0.0001, 0.001, 0.01]
learning_rate_init =
[0.001, 0.01, 0.1]
random_state =
[0, 1, 2, 5]

{'hidden_layer_sizes': 
(110,),

'activation': 'relu',
'solver': 'adam',
'alpha': 0.0006,

'learning_rate_init': 
0.006,

'random_state': 66}

GBR

n_estimators = 
[10, 20, 30, 40, 50, 60, 70, 80, 
90, 100, 125, 150, 175, 200],
random_state = [0, 5, 10, 20, 30],
learning_rate = 
[0.001, 0.003, 0.005, 0.008, 0.01, 0.03, 0.05, 0.08, 
0.1],

{'learning_rate': 0.09,
'loss': 'huber',

'max_depth': 4,
'n_estimators': 20,

'random_state': 10}



max_depth = [1, 2, 3, 4, 5],
loss = ['huber']

ABR

n_estimators = 
[10, 30, 50, 60, 70, 
80, 90, 100, 125, 150],
learning_rate = 
[0.001, 0.008, 0.01, 0.02, 0.03, 0.04, 0.05, 0.08, 
0.09, 0.1],
random_state = 
[0, 5, 10, 15, 20, 30]

{'learning_rate': 0.04,
'n_estimators': 10,

'random_state': 20}

BAGR

n_estimators = 
[2, 5, 8, 10, 20, 30, 40, 
50, 60, 80, 100, 150, 200]
random_state = 
[0, 2, 5, 10, 15, 20, 30]

{‘n_estimators’:5,
‘random_state’:15}

Table S10 
The optimal hyperparameters of the MLP model (ΔG*NH2N).

models The scope of theparameters search Best parameters

XGB

n_estimators =
[50, 100, 150, 200]
learning_rate =
[0.01, 0.05, 0.1, 0.2]
max_depth =
[3, 5, 7, 9]
subsample =
[0.5, 0.7, 1.0]
colsample_bytree =
[0.5, 0.7, 1.0]
random_state =
[0, 2, 5, 10]

{'n_estimators': 100,
'learning_rate': 0.1,

'max_depth': 5,
'subsample': 1.0,

'colsample_bytree': 1.0,
'random_state': 1}

SVR

gamma = 
[0.001, 0.01, 0.02, 0.05, 0.08, 0.1, 0.2, 0.3, 0.5, 0.8, 
1, 5, 8]
epsilon = 
[0.01, 0.05, 0.1, 0.5, 1, 5, 8]

{'epsilon': 0.1,
'gamma': 0.001}

MLP

hidden_layer_sizes =
[(50,), (100,), (50, 50), (100, 50), (100, 100)]
activation =
['relu', 'tanh']
solver =
['adam', 'sgd']
alpha =
[0.0001, 0.001, 0.01]
learning_rate_init =
[0.001, 0.01, 0.1]
random_state =
[0, 1, 2, 5]

{'hidden_layer_sizes': 
(100,),

'activation': 'relu',
'solver': 'adam',
'alpha': 0.0001,

'learning_rate_init': 
0.001,

'random_state': 1}

GBR

n_estimators =
[10, 20, 40, 60, 80, 100, 150, 200]
learning_rate =
[0.001, 0.003, 0.005, 0.01, 0.03, 0.05, 0.1]
max_depth =

{'n_estimators': 50,
'learning_rate': 0.1,

'max_depth': 3,
'loss': 'huber',

'random_state': 0}



[1, 2, 3, 4, 5]
loss =
['squared_error', 'absolute_error', 'huber']
random_state =
[0, 2, 5, 10, 20, 30]

ABR

n_estimators = 
[10, 30, 50, 60, 70, 
80, 90, 100, 125, 150],
learning_rate = 
[0.001, 0.008, 0.01, 0.02, 0.03, 0.04, 0.05, 0.08, 
0.09, 0.1],
random_state = 
[0, 5, 10, 15, 20, 30]

{'learning_rate':0.1,
'n_estimators': 125,
'random_state': 0}

BAGR

n_estimators = 
[2, 5, 8, 10, 20, 30, 40, 
50, 60, 80, 100, 150, 200]
random_state = 
[0, 2, 5, 10, 15, 20, 30]

{‘n_estimators’:150,
‘random_state’:2}

Table S11
The optimal hyperparameters of the MLP model (ΔG*N).

models The scope of theparameters search Best parameters

XGB

n_estimators =
[50, 100, 150, 200]
learning_rate =
[0.01, 0.05, 0.1, 0.2]
max_depth =
[3, 5, 7, 9]
subsample =
[0.5, 0.7, 1.0]
colsample_bytree =
[0.5, 0.7, 1.0]
random_state =
[0, 2, 5, 10]

{'n_estimators': 100,
'learning_rate': 0.1,

'max_depth': 5,
'subsample': 1.0,

'colsample_bytree': 2.0,
'random_state': 2}

SVR

gamma = 
[0.001, 0.01, 0.02, 0.05, 0.08, 0.1, 0.2, 0.3, 0.5, 0.8, 
1, 5, 8]
epsilon = 
[0.01, 0.05, 0.1, 0.5, 1, 5, 8]

{'epsilon': 0.1,
'gamma': 0.001}

MLP

hidden_layer_sizes =
[(50,), (100,), (50, 50), (100, 50), (100, 100)]
activation =
['relu', 'tanh']
solver =
['adam', 'sgd']
alpha =
[0.0001, 0.001, 0.01]
learning_rate_init =
[0.001, 0.01, 0.1]
random_state =
[0, 1, 2, 5]

{'hidden_layer_sizes': 
(150,),

'activation': 'relu',
'solver': 'adam',
'alpha': 0.0001,

'learning_rate_init': 
0.001,

'random_state': 21}

GBR n_estimators =
[10, 20, 40, 60, 80, 100, 150, 200]

{'n_estimators': 50,
'learning_rate': 0.2,



learning_rate =
[0.001, 0.003, 0.005, 0.01, 0.03, 0.05, 0.1]
max_depth =
[1, 2, 3, 4, 5]
loss =
['squared_error', 'absolute_error', 'huber']
random_state =
[0, 2, 5, 10, 20, 30]

'max_depth': 3,
'loss': 'huber',

'random_state': 0}

ABR

n_estimators = 
[10, 30, 50, 60, 70, 
80, 90, 100, 125, 150],
learning_rate = 
[0.001, 0.008, 0.01, 0.02, 0.03, 0.04, 0.05, 0.08, 
0.09, 0.1],
random_state = 
[0, 5, 10, 15, 20, 30]

{'learning_rate':0.1,
'n_estimators': 125,
'random_state': 0}

BAGR

n_estimators = 
[2, 5, 8, 10, 20, 30, 40, 
50, 60, 80, 100, 150, 200]
random_state = 
[0, 2, 5, 10, 15, 20, 30]

{‘n_estimators’:150,
‘random_state’:2}

Table S12 
The optimal hyperparameters of the MLP model (ΔG*NH).

models The scope of theparameters search Best parameters

XGB

n_estimators =
[50, 100, 150, 200]
learning_rate =
[0.01, 0.05, 0.1, 0.2]
max_depth =
[3, 5, 7, 9]
subsample =
[0.5, 0.7, 1.0]
colsample_bytree =
[0.5, 0.7, 1.0]
random_state =
[0, 2, 5, 10]

{'n_estimators': 100,
'learning_rate': 0.1,

'max_depth': 5,
'subsample': 1.0,

'colsample_bytree': 1.0,
'random_state': 0}

SVR

gamma = 
[0.001, 0.01, 0.02, 0.05, 0.08, 0.1, 0.2, 0.3, 0.5, 0.8, 
1, 5, 8]
epsilon = 
[0.01, 0.05, 0.1, 0.5, 1, 5, 8]

{'epsilon': 0.1,
'gamma': 0.001}

MLP

hidden_layer_sizes =
[(50,), (100,), (50, 50), (100, 50), (100, 100)]
activation =
['relu', 'tanh']
solver =
['adam', 'sgd']
alpha =
[0.0001, 0.001, 0.01]
learning_rate_init =
[0.001, 0.01, 0.1]
random_state =
[0, 1, 2, 5]

{'hidden_layer_sizes': 
(100,),

'activation': 'relu',
'solver': 'adam',
'alpha': 0.0001,

'learning_rate_init': 
0.001,

'random_state': 1}



GBR

n_estimators =
[10, 20, 40, 60, 80, 100, 150, 200]
learning_rate =
[0.001, 0.003, 0.005, 0.01, 0.03, 0.05, 0.1]
max_depth =
[1, 2, 3, 4, 5]
loss =
['squared_error', 'absolute_error', 'huber']
random_state =
[0, 2, 5, 10, 20, 30]

{'n_estimators': 50,
'learning_rate': 0.1,

'max_depth': 3,
'loss': 'huber',

'random_state': 0}

ABR

n_estimators = 
[10, 30, 50, 60, 70, 
80, 90, 100, 125, 150],
learning_rate = 
[0.001, 0.008, 0.01, 0.02, 0.03, 0.04, 0.05, 0.08, 
0.09, 0.1],
random_state = 
[0, 5, 10, 15, 20, 30]

{'learning_rate':0.1,
'n_estimators': 125,
'random_state': 0}

BAGR

n_estimators = 
[2, 5, 8, 10, 20, 30, 40, 
50, 60, 80, 100, 150, 200]
random_state = 
[0, 2, 5, 10, 15, 20, 30]

{‘n_estimators’:150,
‘random_state’:2}

Table S13
The optimal hyperparameters of the MLP model (ΔG*NH2).

models The scope of theparameters search Best parameters

XGB

n_estimators =
[50, 100, 150, 200]
learning_rate =
[0.01, 0.05, 0.1, 0.2]
max_depth =
[3, 5, 7, 9]
subsample =
[0.5, 0.7, 1.0]
colsample_bytree =
[0.5, 0.7, 1.0]
random_state =
[0, 2, 5, 10]

{'n_estimators': 100,
'learning_rate': 0.1,

'max_depth': 5,
'subsample': 1.0,

'colsample_bytree': 1.0,
'random_state': 0}

SVR

gamma = 
[0.001, 0.01, 0.02, 0.05, 0.08, 0.1, 0.2, 0.3, 0.5, 0.8, 
1, 5, 8]
epsilon = 
[0.01, 0.05, 0.1, 0.5, 1, 5, 8]

{'epsilon': 0.1,
'gamma': 0.001}

MLP

hidden_layer_sizes =
[(50,), (100,), (50, 50), (100, 50), (100, 100)]
activation =
['relu', 'tanh']
solver =
['adam', 'sgd']
alpha =
[0.0001, 0.001, 0.01]
learning_rate_init =
[0.001, 0.01, 0.1]
random_state =

{'hidden_layer_sizes': 
(150,),

'activation': 'relu',
'solver': 'adam',
'alpha': 0.0001,

'learning_rate_init': 
0.001,

'random_state': 29}



[0, 1, 2, 5]

GBR

n_estimators =
[10, 20, 40, 60, 80, 100, 150, 200]
learning_rate =
[0.001, 0.003, 0.005, 0.01, 0.03, 0.05, 0.1]
max_depth =
[1, 2, 3, 4, 5]
loss =
['squared_error', 'absolute_error', 'huber']
random_state =
[0, 2, 5, 10, 20, 30]

{'n_estimators': 50,
'learning_rate': 0.1,

'max_depth': 3,
'loss': 'huber',

'random_state': 0}

ABR

n_estimators = 
[10, 30, 50, 60, 70, 
80, 90, 100, 125, 150],
learning_rate = 
[0.001, 0.008, 0.01, 0.02, 0.03, 0.04, 0.05, 0.08, 
0.09, 0.1],
random_state = 
[0, 5, 10, 15, 20, 30]

{'learning_rate':0.1,
'n_estimators': 125,
'random_state': 0}

BAGR

n_estimators = 
[2, 5, 8, 10, 20, 30, 40, 
50, 60, 80, 100, 150, 200]
random_state = 
[0, 2, 5, 10, 15, 20, 30]

{‘n_estimators’:150,
‘random_state’:2}



Table S14
106 catalysts exhibiting high NRR activity

1 Ag+Fe 21 Pt+Fe
2 Ag+Ru 22 Ru+Fe
3 Ag+W 23 Ru+Zr
4 Au+W 24 Rh+Mo
5 Au+Ru 25 Rh+Fe
6 Zn+W 26 W+Mo
7 Ta+Ta 27 W+W
8 Fe+Mo 28 Mn+Fe
9 Fe+W 29 Co+Cu
10 Cu+Ru 30 Co+Mo
11 Ir+Mo 31 Co+Y
12 Ir+Ru 32 Zr+W
13 Mo+Fe 33 Zr+Mo
14 Mo+Mo
15 Mo+Co
16 Mo+B
17 Nb+W
18 Nb+Zr
19 Pd+Fe
20 Pd+W



Table S15 Zero-point and entropic corrections to the free energy of the gas phase and 

the adsorbed species on the water solvation catalyst PdW-C2N via the distal pathway.

Name E /eV EZPE/eV TS/eV G/eV
Pd–W@C2N -603.06655 4.56408 0.87242 -619.84655 

*NN -623.53821 4.50568 1.03621 -623.77655 
*NNH -627.24602 4.99415 0.95301 -627.42655 
*NNH2 -631.46769 4.71161 0.78634 -611.32155 

*N -615.24682 4.71120 0.88476 -614.38155 
*NH -618.20799 4.77137 0.82771 -617.37155 
*NH2 -621.28521 4.67049 0.95644 -617.34155  
*NH3 -625.47560 4.56408 0.87242 -619.84655 



Table S16 The optimized geometry of screened catalysts PdW-C2N, WW-C2N and 
CoMo-C2N.

CONTCAR for PdW-C2N   

1.00000000000000     

    14.4149999618999995    0.0000000000000000    0.0000000000000000

     0.0000000000000000    8.3225002288999992    0.0000000000000000

     0.0000000000000000    0.0000000000000000   15.0001001358000003

   N    C    Pd   W 

    12    24     1     1

Direct

 -0.0005466553803268  0.6702156169338599  0.5000000000000000

  0.5014361879606904  0.1710104907138636  0.5000000000000000

  0.6693105466322429  0.6680838568968854  0.5000000000000000

  0.1624000155235557  0.1645643465661867  0.5000000000000000

  0.3271913135962669  0.6718361763435627  0.5000000000000000

  0.8373827622754477  0.1625786497812114  0.5000000000000000

  0.5014361879606904  0.8289895242861343  0.5000000000000000

 -0.0005466553803268  0.3297843830661404  0.5000000000000000

  0.8373827622754477  0.8374213502187887  0.5000000000000000

  0.3271913135962669  0.3281638236564376  0.5000000000000000

  0.1624000155235557  0.8354356534338133  0.5000000000000000

  0.6693105466322429  0.3319161431031145  0.5000000000000000

  0.5814222600206186  0.9135255347650708  0.5000000000000000

  0.0774836558116920  0.4140524599551643  0.5000000000000000

  0.7555500543845531  0.9129832037970511  0.5000000000000000

  0.2469584871724834  0.4124406334048626  0.5000000000000000

  0.1634769383689767  0.6752133316058188  0.5000000000000000



  0.6686357729644313  0.1665266010431958  0.5000000000000000

  0.9211608326427001  0.5860911766766217  0.5000000000000000

  0.4202678730189635  0.0858677784081145  0.5000000000000000

  0.7544378046151033  0.5853121238336561  0.5000000000000000

  0.2436584633033227  0.0862166975668948  0.5000000000000000

  0.3307164022242993  0.8318694559559854  0.5000000000000000

  0.8357430363367041  0.3239942711609395  0.5000000000000000

  0.4202678730189635  0.9141322365918833  0.5000000000000000

  0.9211608326427001  0.4139087943233796  0.5000000000000000

  0.2436584633033227  0.9137833254331036  0.5000000000000000

  0.7544378046151033  0.4146878761663439  0.5000000000000000

  0.8357430363367041  0.6760056988390578  0.5000000000000000

  0.3307164022242993  0.1681305440440149  0.5000000000000000

  0.0774836558116920  0.5859475110448366  0.5000000000000000

  0.5814222600206186  0.0864744802349270  0.5000000000000000

  0.2469584871724834  0.5875593665951373  0.5000000000000000

  0.7555500543845531  0.0870168192029473  0.5000000000000000

  0.6686357729644313  0.8334733989568041  0.5000000000000000

  0.1634769383689767  0.3247866383941788  0.5000000000000000

  0.4288861373673394  0.5000000000000000  0.5000000000000000

  0.5777424346892353  0.5000000000000000  0.5000000000000000



CONTCAR for WW-C2N                             
   1.00000000000000     

    14.4149999618999995    0.0000000000000000    0.0000000000000000

     0.0000000000000000    8.3225002288999992    0.0000000000000000

     0.0000000000000000    0.0000000000000000   15.0001001358000003

   N    C    W 

    12    24     2

Direct

  0.0000000000000000  0.6701329956525859  0.5000000000000000

  0.5000000000000000  0.1779757659140085  0.5000000000000000

  0.6689393042724069  0.6702780143236650  0.5000000000000000

  0.1634153145793425  0.1637149765898654  0.5000000000000000

  0.3310607247275921  0.6702780143236650  0.5000000000000000

  0.8365847154206599  0.1637149765898654  0.5000000000000000

  0.5000000000000000  0.8220242490859891  0.5000000000000000

  0.0000000000000000  0.3298670043474140  0.5000000000000000

  0.8365847154206599  0.8362850234101348  0.5000000000000000

  0.3310607247275921  0.3297219856763349  0.5000000000000000

  0.1634153145793425  0.8362850234101348  0.5000000000000000

  0.6689393042724069  0.3297219856763349  0.5000000000000000

  0.5802377485991147  0.9123841453535121  0.5000000000000000

  0.0784047560077350  0.4139598208315983  0.5000000000000000

  0.7553773610074695  0.9137204999305291  0.5000000000000000

  0.2463630564368253  0.4146900455495640  0.5000000000000000

  0.1644080790284265  0.6753734553263030  0.5000000000000000

  0.6673999058942028  0.1652914648870965  0.5000000000000000

  0.9215952369922680  0.5860401501684027  0.5000000000000000



  0.4197622214008899  0.0876158696464857  0.5000000000000000

  0.7536369145631759  0.5853099544504363  0.5000000000000000

  0.2446226389925305  0.0862795230694691  0.5000000000000000

  0.3326001241057997  0.8347085351129035  0.5000000000000000

  0.8355919499715725  0.3246265146736947  0.5000000000000000

  0.4197622214008899  0.9123841453535121  0.5000000000000000

  0.9215952369922680  0.4139598208315983  0.5000000000000000

  0.2446226389925305  0.9137204999305291  0.5000000000000000

  0.7536369145631759  0.4146900455495640  0.5000000000000000

  0.8355919499715725  0.6753734553263030  0.5000000000000000

  0.3326001241057997  0.1652914648870965  0.5000000000000000

  0.0784047560077350  0.5860401501684027  0.5000000000000000

  0.5802377485991147  0.0876158696464857  0.5000000000000000

  0.2463630564368253  0.5853099544504363  0.5000000000000000

  0.7553773610074695  0.0862795230694691  0.5000000000000000

  0.6673999058942028  0.8347085351129035  0.5000000000000000

  0.1644080790284265  0.3246265146736947  0.5000000000000000

  0.4212505466979786  0.5000000000000000  0.5000000000000000

  0.5787494243020226  0.5000000000000000  0.5000000000000000



CONTCAR for CoMo-C2N  

   1.00000000000000     

    14.4149999618999995    0.0000000000000000    0.0000000000000000

     0.0000000000000000    8.3225002288999992    0.0000000000000000

     0.0000000000000000    0.0000000000000000   15.0001001358000003

   N    C    Co   Mo

    12    24     1     1

Direct

  0.0003937666274036  0.6694126007731116  0.5000000000000000

  0.5026683864650783  0.1728239410687804  0.5000000000000000

  0.6656236540363307  0.6624219606758446  0.5000000000000000

  0.1655912769368192  0.1646021028961620  0.5000000000000000

  0.3336390105261560  0.6692197736119384  0.5000000000000000

  0.8359789113241045  0.1634253650136134  0.5000000000000000

  0.5026683864650783  0.8271760889312220  0.5000000000000000

  0.0003937666274036  0.3305873692268859  0.5000000000000000

  0.8359789113241045  0.8365746499863844  0.5000000000000000

  0.3336390105261560  0.3307801973880630  0.5000000000000000

  0.1655912769368192  0.8353979121038356  0.5000000000000000

  0.6656236540363307  0.3375780103241566  0.5000000000000000

  0.5819996481199858  0.9132394419773345  0.5000000000000000

  0.0792973993729224  0.4140800237277608  0.5000000000000000

  0.7540196232650671  0.9118771864822711  0.5000000000000000

  0.2504910369970253  0.4133315271564214  0.5000000000000000

  0.1667236623944320  0.6751559572145662  0.5000000000000000

  0.6678362010226189  0.1718085937824137  0.5000000000000000

  0.9212057024020807  0.5861004848470330  0.5000000000000000



  0.4221473168449349  0.0860897612498281  0.5000000000000000

  0.7511974159566693  0.5855159622708153  0.5000000000000000

  0.2473435665643866  0.0869010545742274  0.5000000000000000

  0.3342180508105457  0.8309774814108917  0.5000000000000000

  0.8340853254811904  0.3247419375904045  0.5000000000000000

  0.4221473168449349  0.9139102387501717  0.5000000000000000

  0.9212057024020807  0.4138995151529667  0.5000000000000000

  0.2473435665643866  0.9130989454257726  0.5000000000000000

  0.7511974159566693  0.4144840377291846  0.5000000000000000

  0.8340853254811904  0.6752580624095957  0.5000000000000000

  0.3342180508105457  0.1690225185891083  0.5000000000000000

  0.0792973993729224  0.5859199762722392  0.5000000000000000

  0.5819996481199858  0.0867605580226655  0.5000000000000000

  0.2504910369970253  0.5866684728435785  0.5000000000000000

  0.7540196232650671  0.0881228135177288  0.5000000000000000

  0.6678362010226189  0.8281914062175864  0.5000000000000000

  0.1667236623944320  0.3248440427854338  0.5000000000000000

  0.4167035987726272  0.5000000000000000  0.5000000000000000

  0.5543765209318791  0.5000000000000000  0.5000000000000000



S1. SISSO Model Computational Details

Using universal descriptors such as atomic number (M), atomic radius (R), d-electron count (N), d-
band center (DBC), Bader charge (Q), Pauling electronegativity (X), electron affinity (EA), first 
ionization energy (IE), and van der Waals radius (r), an empirical formula was derived through the 
SISSO method.

SISSO (Sure Independence Screening and Sparsifying Operator) is an efficient high-dimensional 
data modeling method. Its computational process consists of two steps: first, it rapidly selects 
important features through correlation-based screening (SIS) to reduce data dimensionality; then, it 
constructs a concise linear or nonlinear model using the sparsifying operator (SO). This method 
ensures computational efficiency while achieving a model with strong interpretability and good 
predictive performance.
Feature Selection Using Linear Correlation Analysis

Consider a dataset containing n observations and p explanatory variables , ,…, , paired with a 𝑥1 𝑥2 𝑥𝑝

target variable . For continuous predictors , their association strength with  is measured through 𝑦 𝑥𝑗 𝑦

Pearson's correlation coefficient :𝑤𝑗

𝑤𝑗 =

𝑛

∑
𝑖 = 1

 (𝑥𝑖𝑗 ‒ 𝑥̅𝑗)(𝑦𝑖 ‒ 𝑦̅)

𝑛

∑
𝑖 = 1

 (𝑥𝑖𝑗 ‒ 𝑥̅𝑗)2
𝑛

∑
𝑖 = 1

 (𝑦𝑖 ‒ 𝑦̅)2

Where and  represent the mean values of and , respectively. Variables are then sorted by the 𝑥𝑗 𝑦 𝑥𝑗 𝑦

magnitude of , and the  most strongly correlated features ( ) are retained for subsequent |𝑤𝑗| ​ 𝑑 𝑑 < 𝑝

model development.
Model Formulation and Optimization Process

Following the SIS screening step, we establish the design matrix , the response vector 𝑋 ∈ 𝑅𝑛 ∗ 𝑑

, and the sparse coefficient vector . The optimization problem is defined by the 𝑦 ∈ 𝑅𝑛 ∗ 1 𝛽 ∈ 𝑅𝑑 ∗ 1

following objective function:

𝐿(𝛽) =
1

2𝑛
‖𝑦 ‒ 𝑋𝛽‖2

2 + 𝜆‖𝛽‖1

The first component quantifies the prediction error using the squared Euclidean norm:

‖𝑦 ‒ 𝑋𝛽‖2
2 =

𝑛

∑
𝑖 = 1

 (𝑦𝑖 ‒
𝑑

∑
𝑗 = 1

  𝑥𝑖𝑗𝛽𝑗)2

The second component introduces sparsity through L1 regularization:



‖𝛽‖1 =
𝑑

∑
𝑗 = 1

 |𝛽𝑗|

Here, λ serves as a tuning parameter that balances model accuracy and sparsity. The optimization 
procedure iteratively refines the coefficients until convergence, yielding a model that maintains 
predictive performance while promoting interpretability through feature sparsity.

Represented by the following regression equation:

Δ𝐺 =‒ 0.45(𝑁2 ⋅ cos (𝑄1)) ‒ (0.21𝑁1 ⋅ 𝑅2

(𝐼𝐸1)3 ) +
26𝑅16 ‒ 8 × 10 ‒ 17𝑀2 ∙ 𝑋2

𝑟1 ⋅ 𝐷𝐵𝐶2
‒ 0.05



S2. Data set sampling principle

To obtain a structurally diverse and representative subset of dual-atom catalyst (DAC) 
configurations, we adopted a structure-based farthest-point sampling (FPS) strategy, following the 
principles introduced by Bartók et al. [1] and adapted here for DAC configuration selection. The 
full set of 729 DAC structures exhibits uneven coverage of the structural configuration space, with 
certain bonding motifs and coordination geometries more heavily represented than others. FPS aims 
for uniform coverage by iteratively selecting structures that are maximally dissimilar from those 
already chosen.

Given a selected set  of DAC configurations, the next configuration  is 𝑆𝑚 = {𝐴𝑖} 𝑚
𝑖 = 1 𝐴𝑚 + 1

determined by:

𝐴𝑚 + 1 = 𝑎𝑟𝑔⁡𝑚𝑎𝑥
𝐴 ∈ 𝐷

 [ 𝑚𝑖𝑛
𝐴' ∈ 𝑆𝑚

 𝐷(𝐴,𝐴')]
where d enotes the full dataset and  is a structural dissimilarity metric computed from low-𝐷 𝐷(𝐴,𝐴')
cost structural fingerprints (e.g., metal pair identity, relative positions, local coordination 
environment). This procedure ensures that each newly selected configuration lies as far as possible 
from all previously chosen ones, thus maximizing geometric diversity in the absence of full 
descriptor information. Since this FPS variant relies solely on structural information, it provides a 
practical and efficient way to determine where to allocate high-cost DFT calculations while ensuring 
comprehensive coverage of the relevant structural space. For more details, please refer to [1].



S3. Details of Dataset Splitting, Model Training

1.Train/Test Split and Random Seed Settings
All machine-learning models in this study were constructed using the same dataset. For each 
reaction step, the available samples were randomly divided into training and test sets with an 8:2 
ratio after shuffling the data. A fixed random seed (random_state = 42) was used during dataset 
splitting to ensure reproducibility.

2.Modeling Strategy for Reaction Pathways and Individual Steps
The three reaction pathways considered in this work were modeled separately. For each pathway, 
the adsorption free energies of intermediates or transition states were treated as independent learning 
targets. Accordingly, a standalone MLP regression model was trained for each reaction step (NN, 
NNH, NH₂N, N, NH, NH₂, NH₃).
Hyperparameter settings, including random seeds used during model training, are listed in the 
Supplementary Information. We emphasize that the random seed used for dataset splitting and the 
random seed used for MLP training are independent: the former controls data partitioning, whereas 
the latter governs the stochastic processes within the neural network during optimization. We 
believe this clarification, along with the detailed hyperparameter reporting, will substantially 
improve the reproducibility of our work.

3.Hyperparameter Search and Selection of Optimal Settings
A grid-search strategy was employed for hyperparameter optimization. The search space included 
variations in hidden-layer architecture, activation functions, regularization coefficients, and initial 
learning rates (e.g., hidden_layer_sizes = [(50,), (100,), (50, 50), (100, 50), (100, 100)], activation 
∈ {relu, tanh}, etc.). Cross-validation was used to select the hyperparameter set that yielded the best 
performance on the validation dataset.
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