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1. SHAP interpretation of the distal pathway (Path

(a)
x2
x1
€2
n
1E1
M2_encaded
DEC2
DBC1

M1_encoded
Rl
R2
N2

M2_encosed
x

oz

@

w

a

“»

SHAP Summary Plot - AG'N2

Aelpe Beas ammg o
sn " D
L
PR N N
.
coamfpn g anf oo
Wt e om0 e

poer S

6.1 00 01 02
SHAP value (impact on model output)

SHAP Summary ot 4G

Feature vae

SHAP Summary Plot - AG*NNH

- (©)

E o0 o o
SHAP value (impact on model autput)

High (b)
X2 b adle | EECE R T IE1
€2 o oot e . x2
X1 "~ e ) DBC1
oBC2 R RN x
IE1 B o €2
ML_encoded - ol M1_encoded
Rz [ Rl
» M2_encoded ol r e s de e - i N2
3 E
H EAZ i 2 M2_encoded
g g
2 bBC1 . 2 2
3
= N2 Aippas. ~ Q2
2 - - R2
Q2 i - - DEC2
n B i 3
N1 - N1
Al + acnanadp o EAL
R1 - n
[ e EA2
Low Low
ET) ET) 0.0 01 02
SHAP value (impact on model output)
S Sy Pt - 67NN - (f) PP———
vt i o
dree x2 e e
L TR O M e e -
o W1_encoded -
bl st DBCL -
Lelin 2 -
o] #oma a2 B
s o § a 4 -
k] 0 % M2 encoded -k e
. § a - ot
a it & 3 =
Peabe b 4 ] .ep
L] oscz a-—
.- @ el
-+ " ‘P
+ e +
[} ex +
| " 1
-04 -02 0 08 10 e 02 -01 00 G g

o 6z oi o8
‘SHAP value (impact on model output]

T oz o
SHAP valu (impact on model output]

1) ML model.

SHAP Summary Plot - AG*NNH2

-—
. Wt i
R
‘ .
e
B W
u.‘-- .
-
- O

cerrb b bh

63 02 01 04
SHAP value (impact on model output)

SHAP Summary Fet - 4GoNH3

-
(2).. i
x2 [
X Fo.
o ke
1 encoded 4+
T
oBC2 .
€2 -+
n N 3
RL -
e g
” Ead
M2_encoded g e
™ -4
a2 'Y
n +
o +
e -4

52 o0 0 s
SHAP Value [impact on model autput)

High

Feature value

Feature vabue

Fig. S1. SHAP summary plot of the MLP model for the distal pathway (Path 1): (a)

AG*N,, (b) AG*NNH, (c) AG*NNH,, (d) AG*N, (¢) AG*NH, (f) AG*NH, and (g)

AG*NH;.



2. The Prediction of six machine learning models for the distal pathway (Path 1)
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Fig. S2. The machine learning models were used to predict the adsorption free energy
in the first hydrogenation step of the distal pathway (Path 1): (a) GBR, (b) ABR, (c)

BAGR, (d) XGB, (¢) MLP, and (f) SVR.



3. AIMD simulation results for the distal pathway (Path 1)

(a)

Energy (eV)

.
&

Energy (eV)

3 300 K] (b) s 300 K]
¢954 Initial Final 185 Initial Final
s e sachioasbics JERMN s eitpiosivostiies
S AL e % A A S AL
6551 2 s
635-" oo 325
615 305
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
Time (fs) Time (fs)
s 500 K] (e) 43 500 K|
695 Initial Final 385 Initial Final
90 4 o PUIPY © G0 ¢ JU I SR LI
iy eesloselieveloce ARicesToociocelecs
W v*v“v%" g * VA"& = oAl
6551 2 345
635 I 325 i
615 305
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000
Time (fs) Time (fs)

(c) 410 K]
90 Initial Final
L eesLoooblosclese
2 350
et TR
330
310
o 10000 20000 30000 40000 50000
Time (fs)
oy 2 500K]
390 Initial Final
g M {;I:[;nq;{;_]-o({;pr{i}j
2 350
DOM
310
0 10000 20000 30000 40000 50000
Time (fs)

Fig. S3. AIMD simulations of PAW—-C:N (a, d), WW—-C:2N (b, e), and CoMo—C:N (c, f)

at 300 K and 500 K (50 ps, 1 fs step). All systems exhibit stable energy fluctuations and

intact structures, confirming their thermal robustness as catalytic sites.



4. The Prediction of six machine learning models for the alternating pathway
(Path 2)
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Fig. S4. Fitting and prediction results of all six machine learning models—(a) MLP, (b)
GBR, (¢) XGR, (d) SVR, (¢) BAGR, (f) ABR on the alternating pathway dataset (Path

2), with performance comparison.



5. The Prediction of six machine learning models for the enzymatic pathway (Path

3)
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Fig. S5. Fitting and prediction results of all six machine learning models—(a) MLP, (b)

GBR, (c) XGR, (d) SVR, (e) BAGR, (f) ABR on the enzymatic pathway dataset (Path

3), with performance comparison.



6. Comparison between DFT-calculated and MLP-predicted for the alternating

pathway (Path 2)
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Fig.S6. Comparison between DFT-calculated and MLP-predicted AG values for the

alternating pathway (Path 2): (a) AG*NN, (b) AG*NNH, and (c) AG**NHs. The sub-

figures display the optimized geometries of the corresponding reaction intermediates

involved in the alternating pathway.



7. Comparison between DFT-calculated and MLP-predicted for the enzymatic

pathway (Path 3)
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Fig.S7. Comparison between DFT-calculated and MLP-predicted AG values for the

distal pathway (Path 3): (a) AG*NN, (b) AG*NNH, and (c) AG**NHs. The sub-figures

display the optimized geometries of the corresponding reaction intermediates involved

in the enzymatic pathway.



8. Error analysis of MLP model
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Fig. S8. Error distribution of the top 20 metal combinations with the largest MLP model

€rror.
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PCA of MOLMB_CZN descriptor space
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Fig.S12. Principal component analysis of initial data set



Machine Learning Model Fitting Results
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Fig.S13. The fitting effect of the structure after MAMB replacement in the initial data

set.



9. The detailed thermodynamic corrections and Gibbs free energies under both

PBE and PBE+U.

Table S1. Zero-point energies and entropy correction values of species in the gas
phase and adsorbed on the Pd-W @C:N catalyst (PBE), used to describe the distal

pathway of electrochemical nitrogen reduction to ammonia on this catalyst.

Name E /eV Ezpe/eV TS/eV G/eV
Pd-W@C,N -325.95249 0 0 -325.95249
*NN -342.60573 0.50724 0.63399 -342.73248
*NNH -346.43342 0.97631 1.01877 -346.47588
*NNH, -350.68853 1.25861 1.03270 -350.46262
*N -334.63767 0.34346 0.06301 -334.35722
*NH -338.06459 1.03354 0.62614 -337.65719
*NH, -342.00134 1.68443 0.41045 -340.72736
*NH; -345.16821 1.47817 0.97739 -344.66743

distal pathway of PAW-C2N

PAW-C,N

*N *NH *NH2 *NH3




Table S2 Zero-point energies and entropy correction values of species in the gas
phase and adsorbed on the W-W @C:N catalyst (PBE), used to describe the distal

pathway of electrochemical nitrogen reduction to ammonia on this catalyst.

Name E /eV Ezpe/eV TS/eV G/eV
W-W@C,N -329.73065 0 0 -346.45065
*NN -346.96716 0.80412 0.28754 -346.45058
*NNH -349.59703 0.73043 1.11369 -349.98029
*NNH, -354.12377 1.34717 1.31401 -354.09061
*N -339.03926 0.32891 0.19533 -338.90568
*NH -342.81529 0.76427 0.44462 -342.49564
*NH, -346.8983 1.69425 0.71166 -345.91571
*NH; -349.01547 1.29234 1.07263 -348.79576

distal pathway of WW-C2N
WW-C,N

*N *NH *NH2 *NH3

Table S3 Zero-point energies and entropy correction values of species in the gas
phase and adsorbed on the Co-Mo @C:N catalyst (PBE), used to describe the distal

pathway of electrochemical nitrogen reduction to ammonia on this catalyst.

Name E /eV Ezpe/eV TS/eV G/eV
Co-Mo@C,N  -327.70296 0 0 -327.70296
*NN -345.44309 0.42992 0.55978 -345.57295
*NNH -348.76964 1.16321 0.79651 -348.40294
*NNH, -352.17425 1.15427 0.86291 -351.88289
*N -336.62397 0.18953 0.18355 -336.61799
*NH -340.74512 0.95221 0.50505 -340.29796
*NH, -345.19159 1.52588 0.5623 -344.22801

*NH; -347.56132 1.36741 0.80353 -346.99744



distal pathway of CoMo-C2N

CoMo-C,N

*N *NH *NH2 *NH3

Table S4 Zero-point energies and entropy correction values of species in the gas
phase and adsorbed on the Pd-W @C:N catalyst (PBE+U), used to describe the distal

pathway of electrochemical nitrogen reduction to ammonia on this catalyst.

Name E /eV Ezpe/eV TS/eV G/eV
Pd—W@C,N -322.85594 0 0 -322.85594
*NN -339.24819 0.36521 0.46281 -339.34579
*NNH -343.24723 0.66630 0.70295 -343.28388
*NNH, -347.28685 0.93148 0.69191 -347.04728
*N -331.52551 0.24024 0.04726 -331.33253
*NH -334.81916 0.75427 0.43830 -334.50319
*NH, -338.78652 1.11164 0.29552 -337.97041

*NH; -341.75104 1.04947 0.64508 -341.34665



Table S5 Zero-point energies and entropy correction values of species in the gas
phase and adsorbed on the W-W @C:N catalyst (PBE+U), used to describe the distal

pathway of electrochemical nitrogen reduction to ammonia on this catalyst.

Name E /eV Ezpe/eV TS/eV G/eV
W-W@C,N -326.59821 0 0 -326.59821
*NN -343.56688 0.56283 0.20990 -343.21395
*NNH -346.38045 0.52565 0.74617 -346.60097
*NNH, -350.68878 0.91604 0.98551 -350.75825
*N -335.88629 0.24342 0.13673 -335.7796
*NH -339.52436 0.50441 0.31568 -339.33563
*NH, -343.63746 1.16907 0.46970 -342.93809
*NH; -345.52532 0.91764 0.72939 -345.33707

Table S6 Zero-point energies and entropy correction values of species in the gas

phase and adsorbed on the Co-Mo @C:N catalyst (PBE+U), used to describe the

distal pathway of electrochemical nitrogen reduction to ammonia on this catalyst.

Name E /eV Ezpe/eV TS/eV G/eV
Co-Mo@C,N  -324.58978 0 0 -324.58978
*NN -342.05775 0.30094 0.41424 -342.17105
*NNH -345.52377 0.83750 0.53367 -345.21994
*NNH, -348.75816 0.78486 0.64718 -348.62048
*N -333.45937 0.13838 0.12849 -333.44948
*NH -337.47395 0.62845 0.36869 -337.21419
*NH, -342.01483 1.08342 0.38236 -341.31377

*NH; -344.12046 0.94316 0.57051 -343.74781






10. The parameters of six machine learning models

According to the given scope of the parameters search, the best parameter
combination can be obtained through GridSearchCV.

Table S7
The optimal hyperparameters of the MLP model (AG*NN).
models The scope of theparameters search Best parameters
n_estimators =
[50, 100, 150, 200]
learning_rate =
[0.01, 0.05, 0.1, 0.2] {'n_estimators': 100,
max_depth = 'learning_rate': 0.1,
[3,5,7,9] 'max_depth'": 5,
XGB subsample = 'subsample': 1.0,
[0.5,0.7,1.0] 'colsample_bytree": 1.0,
colsample_bytree = 'random_state': 0}
[0.5,0.7,1.0]
random_state =
[0,2,5,10]
gamma =
[0.001, 0.01, 0.02, 0.05, 0.08, 0.1, 0.2, 0.3, 0.5, 0.8, S
SVR 1.5, 8] {'epsilon": 0.1,
P 'gamma’: 0.001}
epsilon =
[0.01,0.05,0.1,0.5, 1, 5, 8]
hidden_layer sizes =
[(50,), (100,), (50, 50), (100, 50), (100, 100)]
activation = {'hidden_layer sizes"
['relu’, 'tanh'] (100,),
solver = 'activation': 'relu’,
['adam', 'sgd'] 'solver": 'adam’,
MLP 1 o ipha = ‘alpha': 0.0001,
[0.0001, 0.001, 0.01] 'learning_rate_init":
learning_rate init = 0.001,
[0.001, 0.01, 0.1] ‘random_state": 1}
random_state =
[0,1,2,5]
n_estimators =
[10, 20, 40, 60, 80, 100, 150, 200]
learning_rate = . . .
[0.001, 0.003, 0.005, 0.01, 0.03, 0.05, 0.1] ,{ln—es.“mamr?; >0,
max_depth = earning_rate": 0.1,
GBR - 'max_depth': 3,
[1’ 2’3 3’ 47 5] 71 1. Vh b {
7 oss" "huber’,
loss = 'random_state’: 0}
['squared _error', 'absolute error', "huber'] Tandom_statc:
random_state =
[0,2, 5,10, 20, 30]
n_estimators =
[10, 30, 50, 60, 70, {'learning_rate"0.1,
ABR 80, 90, 100, 125, 150], 'n_estimators": 125,
learning_rate = 'random_state": 0}
[0.001, 0.008, 0.01, 0.02, 0.03, 0.04, 0.05, 0.08,




0.09, 0.1],
random_state =
[0, 5, 10, 15, 20, 30]

n_estimators =
[2, 5, 8, 10, 20, 30, 40,

{‘n_estimators’:150,

BAGR 50, 60, 80, 100, 150, 200] . .
7 random_state’:2}
random_state =
[0, 2, 5, 10, 15, 20, 30]
Table S8
The optimal hyperparameters of the MLP model (AG*NNH).
models The scope of theparameters search Best parameters
n_estimators =
[50, 100, 150, 200]
learning_rate =
[0.01, 0.05, 0.1, 0.2] {'n_estimators": 121,
max_depth = 'learning_rate': 0.3,
[3,5,7,9] 'max_depth": 3,
XGB subsample = 'subsample': 1.0,
[0.5,0.7,1.0] 'colsample_bytree': 1.0,
colsample_bytree = 'random_state": 40}
[0.5,0.7,1.0]
random_state =
[0,2,5,10]
gamma =
[0.001, 0.01, 0.02, 0.05, 0.08, 0.1, e
SVR  |0.2,03,05,08,1,5,8] {epsilon’: 0.001,
epsilon = 'gamma’: 0.3}
[0.01, 0.05,0.1,0.5, 1, 5, 8]
hidden_layer sizes =
[(50,), (100,), (50, 50), (100, 50), (100, 100)]
activation = {'hidden_layer sizes'":
['relu’, 'tanh'] (130,),
solver = 'activation': 'relu’,
['adam’, 'sgd'] 'solver': 'adam’,
MLP alpha = 'alpha': 0.0003,
[0.0001, 0.001, 0.01] 'learning_rate init":
learning_rate init = 0.002,
[0.001, 0.01, 0.1] 'random_state': 33}
random_state =
[0,1,2,5]
n_estimators =
[10, 20, 30, 40, 50, 60, 70, 80, . . .
90, 100, 125, 150, 175, 200], {'learning_rate': 0.02,
random_state = [0, 5, 10, 20, 30], loss": "huber’,
GBR learning_rate = 'max_depth": 4,
[0.001, 0.003, 0.005, 0.008, 0.01, " estimators’: 125
0.03, 0.05, 0.08, 0.1], - ’
max_depth =[1,2, 3, 4, 5], 'random_state': 0}
loss = ['huber']
n_estimators = {'learning_rate": 0.05,
ABR 1110, 30, 50, 60, 70, S .
n_estimators': 10,




80, 90, 100, 125, 150],
learning_rate =

[0.001, 0.008, 0.01, 0.02, 0.03,
0.04, 0.05, 0.08, 0.09, 0.1],
random_state =

[0, 5, 10, 15, 20, 30]

'random_state': 15}

n_estimators =
[2, 5,38, 10, 20, 30, 40,

{‘n_estimators’:8,

BAGR 50, 60, 80, 100, 150, 200]
random state = ‘random_state’:5}
[0, 2,5, 10, 15, 20, 30]
Table S9
The optimal hyperparameters of the MLP model (AG*NHj).
models The scope of theparameters search Best parameters
n_estimators =
[50, 100, 150, 200]
learning_rate =
[0.01, 0.05, 0.1, 0.2] {'n_estimators': 100,
max_depth = 'learning_rate": 0.5,
[3,5,7,9] 'max_depth'": 7,
XGB subsample = 'subsample': 1.0,
[0.5,0.7,1.0] ‘colsample_bytree': 1.0,
colsample_bytree = 'random_state": 32}
[0.5, 0.7, 1.0]
random_state =
[0,2,5,10]
gamma =
[0.001, 0.01, 0.02, 0.05, 0.08, 0.1, (epsilon’: 0.1
SVR 0.2,0.3,0.5,0.8, 1,5, 8] epstion- ©.%,
epsilon = 'gamma': 0.001}
[0.01,0.05,0.1,0.5, 1, 5, 8]
hidden_layer sizes =
[(50,), (100,), (50, 50), (100, 50), (100, 100)]
activation = {'hidden_layer sizes'":
['relu’, 'tanh'] (110,),
solver = 'activation': 'relu’,
['adam', 'sgd'] 'solver': 'adam’,
MLP alpha = 'alpha': 0.0006,
[0.0001, 0.001, 0.01] 'learning_rate_init"
learning_rate init = 0.006,
[0.001, 0.01, 0.1] ‘random_state': 66}
random_state =
[0,1,2,5]
n_estimators = ) . .
[10, 20, 30, 40, 50, 60, 70, 80, {learning_rate': 0.09,
90, 100, 125, 150, 175, 2001, 'loss": 'huber’,
GBR random_state = [0, 5, 10, 20, 30], 'max_depth': 4,
learning_rate = 'n_estimators": 20,
[0.001, 0.003, 0.005, 0.008, 0.01, 0.03, 0.05, 0.08, L ,
0.1], random_state': 10}




max_depth=[1, 2, 3, 4, 5],
loss = ['huber']

n_estimators =

[10, 30, 50, 60, 70,
80, 90, 100, 125, 150],
learning_rate =

{'learning_rate': 0.04,

ABR 110,001, 0.008, 0.01, 0.02, 0.03, 0.04, 0.05, 0.08, n_estimators": 10,
0.09, 0.1], 'random_state': 20}
random_state =
[0, 5, 10, 15, 20, 30]
n_estimators =
[2,5,8, 10, 20, 30, 40, . . .

BAGR | 50, 60, 80, 100, 150, 200] {'n_estimators”5,
random state = ‘random_state’:15}
[0, 2, 5, 10, 15, 20, 30]
Table S10
The optimal hyperparameters of the MLP model (4G*NH,N).
models The scope of theparameters search Best parameters
n_estimators =
[50, 100, 150, 200]
learning_rate =
[0.01, 0.05, 0.1, 0.2] {'n_estimators': 100,
max_depth = 'learning_rate": 0.1,
[3,5,7,9] 'max_depth'": 5,

XGB subsample = 'subsample': 1.0,
[0.5,0.7,1.0] 'colsample_bytree": 1.0,
colsample_bytree = 'random_state': 1}
[0.5,0.7,1.0]
random_state =
[0,2,5,10]
gamma =
[0.001, 0.01, 0.02, 0.05, 0.08, 0.1, 0.2, 0.3, 0.5, 0.8, epsilon’: 0.1

SVR 1.5, 8] ’ {'epsi (')n. 0.1,

D gamma': 0.001}
epsilon =
[0.01,0.05,0.1,0.5, 1, 5, 8]
hidden_layer sizes =
[(50,), (100,), (50, 50), (100, 50), (100, 100)]
activation = {'hidden_layer sizes"
['relu’, 'tanh'] (100,),
solver = 'activation': 'relu’,
['adam', 'sgd'] 'solver": 'adam’,

MLP 1 ipha = ‘alpha': 0.0001,
[0.0001, 0.001, 0.01] 'learning_rate_init":
learning_rate init = 0.001,
[0.001, 0.01, 0.1] ‘random_state": 1}
random_state =
[0,1,2,5]
n_estimators = {'n_estimators": 50,
[10, 20, 40, 60, 80, 100, 150, 200] 'learning_rate': 0.1,

GBR learning_rate = 'max_depth'": 3,
[0.001, 0.003, 0.005, 0.01, 0.03, 0.05, 0.1] 'loss': "huber’,
max_depth = 'random_state': 0}




[1,2,3,4,5]
loss =
['squared_error', 'absolute error', "huber']

random_state =
[0, 2, 5, 10, 20, 30]

ABR

n_estimators =

[10, 30, 50, 60, 70,

80, 90, 100, 125, 150],

learning_rate =

[0.001, 0.008, 0.01, 0.02, 0.03, 0.04, 0.05, 0.08,
0.09, 0.1],

random_state =

[0, 5, 10, 15, 20, 30]

{'learning_rate"0.1,
'n_estimators": 125,
'random_state': 0}

BAGR

n_estimators =

[2, 5,8, 10, 20, 30, 40,
50, 60, 80, 100, 150, 200]
random_state =
[0,2,5,10, 15, 20, 30]

{‘n_estimators’:150,
‘random_state’:2}

Table S11

The optimal hyperparameters of the MLP model (4G*N).

[10, 20, 40, 60, 80, 100, 150, 200]

models The scope of theparameters search Best parameters
n_estimators =
[50, 100, 150, 200]
learning_rate =
[0.01, 0.05, 0.1, 0.2] {'n_estimators': 100,
max_depth = 'learning_rate': 0.1,
[3,5,7,9] 'max_depth': 5,
XGB subsample = 'subsample': 1.0,
[0.5,0.7,1.0] 'colsample_bytree': 2.0,
colsample_bytree = 'random_state': 2}
[0.5,0.7,1.0]
random_state =
[0,2,5,10]
gamma =
[0.001, 0.01, 0.02, 0.05, 0.08, 0.1, 0.2, 0.3, 0.5, 0.8, S
SVR 1.5, 8] ’ {epsﬂ(')n. 0.1,
S gamma': 0.001}
epsilon =
[0.01,0.05,0.1,0.5, 1, 5, 8]
hidden_layer sizes =
[(50,), (100,), (50, 50), (100, 50), (100, 100)]
activation = {'hidden_layer sizes"
['relu’, 'tanh'] (150,),
solver = 'activation': 'relu’,
['adam', 'sgd'] 'solver': 'adam’,
MLP - ipha = ‘alpha’: 0.0001,
[0.0001, 0.001, 0.01] 'learning_rate_init'":
learning_rate init = 0.001,
[0.001, 0.01, 0.1] ‘random_state': 21}
random_state =
[0,1,2,5]
GBR n_estimators = {'n_estimators": 50,

'learning_rate': 0.2,




learning rate =

[0.001, 0.003, 0.005, 0.01, 0.03, 0.05, 0.1]
max_depth =

[1,2,3,4,5]

loss =

['squared_error', 'absolute_error', "huber']
random_state =

[0, 2, 5, 10, 20, 30]

'max_depth": 3,
'loss': "huber’,
'random_state': 0}

ABR

n_estimators =

[10, 30, 50, 60, 70,

80, 90, 100, 125, 150],

learning_rate =

[0.001, 0.008, 0.01, 0.02, 0.03, 0.04, 0.05, 0.08,
0.09, 0.1],

random_state =

[0, 5,10, 15, 20, 30]

{'learning_rate"0.1,
'n_estimators'": 125,
'random_state": 0}

BAGR

n_estimators =

[2,5,8, 10, 20, 30, 40,
50, 60, 80, 100, 150, 200]
random_state =
[0,2,5,10,15,20,30]

{‘n_estimators’:150,
‘random_state’:2}

Table S12

The optimal hyperparameters of the MLP model (4G *NH).

[0.0001, 0.001, 0.01]
learning_rate init =
[0.001, 0.01, 0.1]
random_state =
[0,1,2,5]

models The scope of theparameters search Best parameters
n_estimators =
[50, 100, 150, 200]
learning_rate =
[0.01, 0.05, 0.1, 0.2] {'n_estimators": 100,
max_depth = 'learning_rate": 0.1,
[3,5,7,9] 'max_depth'": 5,
XGB subsample = 'subsample': 1.0,
[0.5, 0.7, 1.0] 'colsample_bytree': 1.0,
colsample_bytree = ‘random_state": 0}
[0.5,0.7, 1.0]
random_state =
[0,2,5,10]
gamma =
[0.001, 0.01, 0.02, 0.05, 0.08, 0.1, 0.2, 0.3, 0.5, 0.8, o
SVR 1.5, 8] ’ {epsﬂ(')n. 0.1,
S gamma': 0.001}
epsilon =
[0.01, 0.05,0.1,0.5, 1, 5, 8]
hidden_layer sizes =
[(50,), (100,), (50, 50), (100, 50), (100, 100)]
activation = {'hidden_layer sizes"
['relu’, 'tanh'] (100,),
solver = 'activation': 'relu’,
['adam', 'sgd'] 'solver': 'adam’,
MLP 1 ipha = ‘alpha’: 0.0001,

'learning_rate_init":
0.001,
'random_state": 1}




n_estimators =
[10, 20, 40, 60, 80, 100, 150, 200]
learning_rate = ' . §
[0.001, 0.003, 0.005, 0.01, 0.03, 0.05, 0.1] {'n_estimators': 30,
max_depth = learning_rate': 0.1,
GBR [1,2,3,4,5] 'max_depth'": 3,
loss= "loss": 'huber’,
['squared_error', 'absolute_error', 'huber'] random_state': 0}
random_state =
[0, 2,5, 10, 20, 30]
n_estimators =
[10, 30, 50, 60, 70,
fe(;’ngl?ﬂ; Or(:li[; iS, 150k {'learning_rate"0.1,
ABR [0.001, 0.008, 0.01, 0.02, 0.03, 0.04, 0.05, 0.08, n_estimators "}25»

0.09, 0.1] random_state": 0}
random_state =
[0, 5, 10, 15, 20, 30]
n_estimators =
[2,5,38, 10, 20, 30, 40, L )

BAGR 50, 60, 80, 100, 150, 200] {‘n_estlrnators : .150,
random state = random_state’:2}
[0, 2,5, 10, 15, 20, 30]

Table S13

The optimal hyperparameters of the MLP model (4G *NH,).

[0.0001, 0.001, 0.01]
learning_rate init=
[0.001, 0.01, 0.1]
random_state =

models The scope of theparameters search Best parameters
n_estimators =
[50, 100, 150, 200]
learning_rate =
[0.01, 0.05, 0.1, 0.2] {'n_estimators": 100,
max_depth = 'learning_rate": 0.1,
(3,5,7,9] 'max_depth'": 5,
XGB subsample = 'subsample': 1.0,
[0.5,0.7,1.0] 'colsample bytree': 1.0,
colsample_bytree = 'random_state': 0}
[0.5, 0.7, 1.0]
random_state =
[0,2,5,10]
gamma =
[0.001, 0.01, 0.02, 0.05, 0.08, 0.1, 0.2, 0.3, 0.5, 0.8, e
{"epsilon": 0.1,
SVR 1,5, 8]
P 'gamma': 0.001}
epsilon =
[0.01,0.05,0.1,0.5, 1, 5, 8]
hidden_layer sizes =
[(50,), (10(1,), (50, 50), (100, 50), (100, 100)] ('hidden_layer sizes"
activation = (150,)
['relu’, 'tanh'] e
_ activation': 'relu’,
solver = 'solver': 'adam'
MLP gf‘;ﬁf:’ sed] ‘alpha': 0.0001,

'learning_rate _init":
0.001,
‘random_state': 29}




[0, 1,2, 5]

GBR

n_estimators =

[10, 20, 40, 60, 80, 100, 150, 200]
learning_rate =

[0.001, 0.003, 0.005, 0.01, 0.03, 0.05, 0.1]
max_depth =

[1,2,3,4,5]

loss =

['squared_error', 'absolute error', "huber']
random_state =

[0, 2, 5, 10, 20, 30]

{'n_estimators": 50,
'learning_rate": 0.1,
'max_depth'": 3,
'loss': "huber’,
'random_state': 0}

ABR

n_estimators =

[10, 30, 50, 60, 70,

80, 90, 100, 125, 150],

learning_rate =

[0.001, 0.008, 0.01, 0.02, 0.03, 0.04, 0.05, 0.08,
0.09, 0.1],

random_state =

[0, 5,10, 15, 20, 30]

{'learning_rate"0.1,
'n_estimators': 125,
'random_state": 0}

BAGR

n_estimators =

[2,5,8, 10, 20, 30, 40,
50, 60, 80, 100, 150, 200]
random_state =
[0,2,5,10,15,20,30]

{‘n_estimators’:150,
‘random_state’:2}




Table S14
106 catalysts exhibiting high NRR activity

1 AgtFe 21 Pt+Fe
2 Ag+Ru 22 RutFe
3 Ag+W 23 Rut+Zr
4 Aut+W 24 Rh+Mo
5 Au+Ru 25 Rh+Fe
6 Znt+W 26 W-+Mo
7 Ta+Ta 27 W+W
8 Fet+Mo 28 Mn+Fe
9 Fe+W 29 Co+Cu
10 Cut+Ru 30 Co+Mo
11 Ir+Mo 31 Cot+Y
12 Ir+Ru 32 Zr+W
13 Mo+Fe 33 Zr+Mo
14 Mo+Mo

15 Mo+Co

16 Mo+B

17 Nb+W

18 Nb+Zr

19 Pd+Fe
20 Pd+W




Table S15 Zero-point and entropic corrections to the free energy of the gas phase and

the adsorbed species on the water solvation catalyst PdAW-C2N via the distal pathway.

Name E /eV Ezpe/eV TS/eV G/eV
Pd-W@C,N -603.06655 4.56408 0.87242 -619.84655
*NN -623.53821 4.50568 1.03621 -623.77655
*NNH -627.24602 4.99415 0.95301 -627.42655
*NNH, -631.46769 471161 0.78634 -611.32155
*N -615.24682 4.71120 0.88476 -614.38155
*NH -618.20799 4.77137 0.82771 -617.37155
*NH, -621.28521 4.67049 0.95644 -617.34155

*NH; -625.47560 4.56408 0.87242 -619.84655



Table S16 The optimized geometry of screened catalysts PAW-C,N, WW-C,N and

CoMo-C,N.

CONTCAR for PdAW-C2N
1.00000000000000
14.4149999618999995
0.0000000000000000
0.0000000000000000
N C Pd W
12 24 1

Direct

0.0000000000000000

8.3225002288999992

0.0000000000000000

0.0000000000000000

0.0000000000000000

15.0001001358000003

-0.0005466553803268

0.5014361879606904

0.6693105466322429

0.1624000155235557

0.3271913135962669

0.8373827622754477

0.5014361879606904

-0.0005466553803268

0.8373827622754477

0.3271913135962669

0.1624000155235557

0.6693105466322429

0.5814222600206186

0.0774836558116920

0.7555500543845531

0.2469584871724834

0.1634769383689767

0.6702156169338599

0.1710104907138636

0.6680838568968854

0.1645643465661867

0.6718361763435627

0.1625786497812114

0.8289895242861343

0.3297843830661404

0.8374213502187887

0.3281638236564376

0.8354356534338133

0.3319161431031145

0.9135255347650708

0.4140524599551643

0.9129832037970511

0.4124406334048626

0.6752133316058188

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000



0.6686357729644313

0.9211608326427001

0.4202678730189635

0.7544378046151033

0.2436584633033227

0.3307164022242993

0.8357430363367041

0.4202678730189635

0.9211608326427001

0.2436584633033227

0.7544378046151033

0.8357430363367041

0.3307164022242993

0.0774836558116920

0.5814222600206186

0.2469584871724834

0.7555500543845531

0.6686357729644313

0.1634769383689767

0.4288861373673394

0.5777424346892353

0.1665266010431958

0.5860911766766217

0.0858677784081145

0.5853121238336561

0.0862166975668948

0.8318694559559854

0.3239942711609395

0.9141322365918833

0.4139087943233796

0.9137833254331036

0.4146878761663439

0.6760056988390578

0.1681305440440149

0.5859475110448366

0.0864744802349270

0.5875593665951373

0.0870168192029473

0.8334733989568041

0.3247866383941788

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000



CONTCAR for WW-C2N

1.00000000000000

0.0000000000000000

0.0000000000000000

15.0001001358000003

Direct

14.4149999618999995 0.0000000000000000
0.0000000000000000 8.3225002288999992
0.0000000000000000 0.0000000000000000

N C 4
12 24 2
0.0000000000000000 0.6701329956525859
0.5000000000000000 0.1779757659140085

0.6689393042724069

0.1634153145793425

0.3310607247275921

0.8365847154206599

0.5000000000000000

0.0000000000000000

0.8365847154206599

0.3310607247275921

0.1634153145793425

0.6689393042724069

0.5802377485991147

0.0784047560077350

0.7553773610074695

0.2463630564368253

0.1644080790284265

0.6673999058942028

0.9215952369922680

0.6702780143236650

0.1637149765898654

0.6702780143236650

0.1637149765898654

0.8220242490859891

0.3298670043474140

0.8362850234101348

0.3297219856763349

0.8362850234101348

0.3297219856763349

0.9123841453535121

0.4139598208315983

0.9137204999305291

0.4146900455495640

0.6753734553263030

0.1652914648870965

0.5860401501684027

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000



0.4197622214008899

0.7536369145631759

0.2446226389925305

0.3326001241057997

0.8355919499715725

0.4197622214008899

0.9215952369922680

0.2446226389925305

0.7536369145631759

0.8355919499715725

0.3326001241057997

0.0784047560077350

0.5802377485991147

0.2463630564368253

0.7553773610074695

0.6673999058942028

0.1644080790284265

0.4212505466979786

0.5787494243020226

0.0876158696464857

0.5853099544504363

0.0862795230694691

0.8347085351129035

0.3246265146736947

0.9123841453535121

0.4139598208315983

0.9137204999305291

0.4146900455495640

0.6753734553263030

0.1652914648870965

0.5860401501684027

0.0876158696464857

0.5853099544504363

0.0862795230694691

0.8347085351129035

0.3246265146736947

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000

0.5000000000000000



CONTCAR for CoMo-C2N

1.00000000000000

0.5026683864650783

0.6656236540363307

0.1655912769368192

0.3336390105261560

0.8359789113241045

0.5026683864650783

0.0003937666274036

0.8359789113241045

0.3336390105261560

0.1655912769368192

0.6656236540363307

0.5819996481199858

0.0792973993729224

0.7540196232650671

0.2504910369970253

0.1667236623944320

0.6678362010226189

0.9212057024020807

0.1728239410687804

0.6624219606758446

0.1646021028961620

0.6692197736119384

0.1634253650136134
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S1. SISSO Model Computational Details

Using universal descriptors such as atomic number (M), atomic radius (R), d-electron count (N), d-
band center (DBC), Bader charge (Q), Pauling electronegativity (X), electron affinity (EA), first
ionization energy (IE), and van der Waals radius (r), an empirical formula was derived through the
SISSO method.

SISSO (Sure Independence Screening and Sparsifying Operator) is an efficient high-dimensional
data modeling method. Its computational process consists of two steps: first, it rapidly selects
important features through correlation-based screening (SIS) to reduce data dimensionality; then, it
constructs a concise linear or nonlinear model using the sparsifying operator (SO). This method
ensures computational efficiency while achieving a model with strong interpretability and good
predictive performance.

Feature Selection Using Linear Correlation Analysis

Consider a dataset containing n observations and p explanatory variables 1%, *p, paired with a
target variable Y. For continuous predictors %/, their association strength with ¥ is measured through

Pearson's correlation coefficient Vi:

Z (xy=%) (- 7)

i=1

Z (xif‘}j)zz: (yi‘5’)2

i=1

Where %/ and ¥ represent the mean values of %/ and ¥, respectively. Variables are then sorted by the

magnitude of |WJ'|, and the d most strongly correlated features (4 < P) are retained for subsequent

model development.

Model Formulation and Optimization Process

. . . . . *d
Following the SIS screening step, we establish the design matrix X € R"™% the response vector
* . d * e .
YER" 1, and the sparse coefficient vector B € R ' The optimization problem is defined by the
following objective function:

1
L(B) = oly = XBIIZ + 2118l

The first component quantifies the prediction error using the squared Euclidean norm:

n d
lly - XBll3 = Z (Yi - Z Xij j)z

i=1 j=1

The second component introduces sparsity through L1 regularization:



d
181 = ) I8}

j=1

Here, 1 serves as a tuning parameter that balances model accuracy and sparsity. The optimization
procedure iteratively refines the coefficients until convergence, yielding a model that maintains

predictive performance while promoting interpretability through feature sparsity.

Represented by the following regression equation:
0.21N1- RZ) N 26R1°-8x 10" YM2- X2

(IE1)3 rl-DBC2

-0.05

AG =-0.45(N2 - cos (Q1)) - (



S2. Data set sampling principle

To obtain a structurally diverse and representative subset of dual-atom catalyst (DAC)
configurations, we adopted a structure-based farthest-point sampling (FPS) strategy, following the
principles introduced by Bartok et al. [1] and adapted here for DAC configuration selection. The
full set of 729 DAC structures exhibits uneven coverage of the structural configuration space, with
certain bonding motifs and coordination geometries more heavily represented than others. FPS aims
for uniform coverage by iteratively selecting structures that are maximally dissimilar from those
already chosen.

— m
Given a selected set Sm={Ai 21 of DAC configurations, the next configuration Amt1 s
determined by:

min D(A,A‘)

A, .1 =argemax| 1
A€S,

m A€ED

where Dd enotes the full dataset and P(A4) is a structural dissimilarity metric computed from low-
cost structural fingerprints (e.g., metal pair identity, relative positions, local coordination
environment). This procedure ensures that each newly selected configuration lies as far as possible
from all previously chosen ones, thus maximizing geometric diversity in the absence of full
descriptor information. Since this FPS variant relies solely on structural information, it provides a
practical and efficient way to determine where to allocate high-cost DFT calculations while ensuring
comprehensive coverage of the relevant structural space. For more details, please refer to [1].



S3. Details of Dataset Splitting, Model Training

1.Train/Test Split and Random Seed Settings

All machine-learning models in this study were constructed using the same dataset. For each
reaction step, the available samples were randomly divided into training and test sets with an 8:2
ratio after shuffling the data. A fixed random seed (random_state = 42) was used during dataset

splitting to ensure reproducibility.

2.Modeling Strategy for Reaction Pathways and Individual Steps

The three reaction pathways considered in this work were modeled separately. For each pathway,
the adsorption free energies of intermediates or transition states were treated as independent learning
targets. Accordingly, a standalone MLP regression model was trained for each reaction step (NN,
NNH, NH:N, N, NH, NH-, NH3).

Hyperparameter settings, including random seeds used during model training, are listed in the
Supplementary Information. We emphasize that the random seed used for dataset splitting and the
random seed used for MLP training are independent: the former controls data partitioning, whereas
the latter governs the stochastic processes within the neural network during optimization. We
believe this clarification, along with the detailed hyperparameter reporting, will substantially
improve the reproducibility of our work.

3.Hyperparameter Search and Selection of Optimal Settings

A grid-search strategy was employed for hyperparameter optimization. The search space included
variations in hidden-layer architecture, activation functions, regularization coefficients, and initial
learning rates (e.g., hidden_layer sizes = [(50,), (100,), (50, 50), (100, 50), (100, 100)], activation
€ {relu, tanh}, etc.). Cross-validation was used to select the hyperparameter set that yielded the best

performance on the validation dataset.

References

[1] A. P. Bartok, S. De, C. Poelking, N. Bernstein, J. R. Kermode, G. Csanyi and M.
Ceriotti, Sci Adv, 2017, 3, e1701816.



