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Text S1. Unsupervised Machine Learning

Using the matminer library, we extracted 150-dimensional descriptors encoding both
compositional and structural attributes.! Highly correlated features were systematically
eliminated to reduce redundancy and noise. The refined feature set was subjected to
dimensionality reduction via principal component analysis (PCA), preserving the top 30
principal components that captured the majority of variance in the data.? These 30-dimensional
representations were subsequently projected into a two-dimensional latent space using t-
distributed stochastic neighbor embedding (t-SNE), which emphasizes the preservation of local
neighborhood similarities.®> To elucidate latent chemical groupings, we applied K-means
clustering to the t-SNE-embedded space as represented in Figure 1a.* The optimal number of
clusters was identified as K = 8, as determined by two independent approaches: the elbow
method, which revealed a plateau in inertia reduction beyond K = 8, and silhouette analysis,
which yielded a maximum silhouette score of 0.49 at K = 8, indicating a well-defined clustering

structure (Figure S1).
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Figure S1. Determination of the optimal number of clusters using k-means clustering.
(a) Elbow method plot showing the decrease in inertia (within-cluster sum of squares) as the
number of clusters (K) increases, with the optimal K suggested at the point where the decrease
begins to level off. (b) Silhouette score plot illustrating the average silhouette coefficient for
each K, where higher values indicate better-defined clusters.
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Table S1. K-means Cluster Descriptions for Pnictogen Chalcogenide (pn-chg) Systems Based
on Chemical and Structural Properties

Cluster Chemical and Structural Description

C1 Comprises alkali-metal arsenic chalcogenides enriched in s-block cations
C2 Dominated by lanthanide-centered frameworks with f-block chemistry
C3 Encompasses transition-metal-based compounds

C4 Composed of systems rich in p-block elements

Cs Features halide-chalcogenide hybrids coordinated by p-block metal centers
Cé Includes fluorinated and halogen-dense materials with anionic frameworks
Cc7 Contains s-block-rich compositions frequently coexisting with oxide anions
C8 Multinary systems incorporating alkali/alkaline-earth metals and lanthanides

Text S2. Universal Machine Learning Interatomic Potentials (uMLIPs)

MatterSim. The input data for the MatterSim model are constructed from material graphs
built upon the underlying point clouds in the three-dimensional Euclidean space with periodic
boundary conditions.’ Each point represents an atom with an associated element from the

periodic table. We define a materials graph G = (ZV,R,[L,S]) with the following components:

Z denotes the atomic number “iand additional features. The geometric features are

encapsulated by V and atomic coordinates R, with each atomic position 7" in Euclidean space

3 . . .
R”.V represents the relative vectors, such as the bond information between two atoms. S and
L are additional optional information, where S is the global scalar state information, such as
temperature, pressure, and other conditions, and L is the 3 X 3 lattice matrix in crystals. Within

material graphs, nodes correspond to individual atoms and edges are formed based on a
predefined rule. Here, a radial cutoff distance "c is used to construct edges. For any two atoms

i and "), there exists an edge if the Euclidean distance between them is less than or equal to

= "¢ 1t should be noted that if the coordinates are fractional, we scale them to Cartesian

coordinates. As a form of geometric graph, materials graphs exhibit roto-translational
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symmetry in Euclidean space; specifically, MatterSim maintains roto-translational invariance
for scalar properties, such as total energy of materials, and equivariance for vectorial properties
like forces. Given a material graph, MatterSim adapts different input representations and
crystalline features compatible with the underlying architectures, M3GNet and Graphormer.
MACE. The MACE architecture, proposed by Batatia et al. (2022), integrates O(3)-
equivariant message passing with explicit many-body interactions to construct fast and highly
accurate machine-learned interatomic potentials.® Unlike conventional equivariant graph
neural networks that rely primarily on pairwise (two-body) messages and deep stacking to build
complexity, MACE encodes higher-order (three- and four-body) correlations directly within
its message-passing layers, thereby enhancing expressivity, data efficiency, and scalability.
This design enables MACE to achieve state-of-the-art accuracy on benchmark datasets while
maintaining computational efficiency. Notably, the introduction of many-body messages alters
the empirical power-law exponent of the learning curves, leading to more rapid improvement
with increasing data, whereas the inclusion of equivariance alone shifts the curves without
affecting their scaling behavior. By efficiently capturing complex multi-atom interactions,
MACE provides a physically grounded and computationally robust framework, particularly
well-suited for modeling materials where many-body effects such as phonon scattering and
thermal transport play a critical role.

CHGNet. The Crystal Hamiltonian Graph Neural Network (CHGNet) is a model pre-trained
on the energies, forces, stresses, and magnetic moments from the 1.5 million crystal structures
from MPtrj dataset.” In the CHGNet architecture, the angle information is drawn as a pairwise
message passing convolution between bonds (bond graph, where bonds are nodes and edges
are angles), on top of the bond information which is drawn as a pairwise convolution between
atoms (atom graph, where atoms are nodes and edges are bonds).” To constrain the atom

features used to predict energy, forces, and stresses by their charge-state information, the latter
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is inferred from the magnetic moments and atomic orbital theory before the last convolution
layer.

Fine-tuning and transfer learning are efficient strategies used with large pretrained deep
learning models to achieve improved accuracy on small target datasets with data efficiency
compared with training the model from scratch.””'® While the robustness of the pretrained
uMLIPs has been demonstrated in the application examples, better energy and force accuracy
can be achieved with fine-tuning to specific material systems if a high-precision study is
desired. When fine-tuning with additional DFT data points, the effective potential energy
surface described in uMLIP is adjusted to accommodate the additional data. To achieve better
extrapolation and preservation of pretrained knowledge, freezing deeper layers and only

allowing the shallow layers to update during fine-tuning.
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Figure S2. Phonon dispersion curves demonstrating dynamical stability of pnictogen
chalcogenides from cluster C1 using MatterSim.
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Figure S3. Phonon dispersion curves demonstrating dynamical stability of pnictogen
chalcogenides from cluster C1 using MatterSim.
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Figure S4. Phonon dispersion curves demonstrating dynamical stability of pnictogen
chalcogenides from cluster C1 using MatterSim.
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Figure S5. Phonon dispersion curves demonstrating dynamical stability of pnictogen
chalcogenides from cluster C1 using MatterSim.
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Figure S6. Phonon dispersion curves demonstrating dynamical stability of pnictogen
chalcogenides from cluster C1 using MatterSim.
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Figure S7. Phonon dispersion curves demonstrating dynamical stability of pnictogen
chalcogenides from cluster C1 using MatterSim.
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Figure S8. Phonon dispersion curves demonstrating dynamical stability of pnictogen
chalcogenides from cluster C2 using MatterSim.
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Figure S9. Phonon dispersion curves demonstrating dynamical stability of pnictogen
chalcogenides from cluster C3 using MatterSim.
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Figure S10. Phonon dispersion curves demonstrating dynamical stability of pnictogen
chalcogenides from cluster C3 using MatterSim.
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Figure S11. Phonon dispersion curves demonstrating dynamical stability of pnictogen
chalcogenides from cluster C4 using MatterSim.
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Figure S12. Phonon dispersion curves demonstrating dynamical stability of pnictogen
chalcogenides from cluster C5 using MatterSim.
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Table S2. Thermodynamic and electronic properties of screened pnictogen chalcogenide
materials. (a) Energy above the convex hull (Eyy;) values in eV, indicating thermodynamic
stability with many compounds showing values near or at 0 eV/atom. (b) Formation energy
(Ep) in eV/atom, with all screened materials exhibiting negative values confirming their
energetic favorability for synthesis. (¢) Electronic band gap (E,) in eV, demonstrating the
semiconducting nature of the materials with gaps ranging from 0.14 to 2.60 eV, suitable for
thermoelectric applications.

formula mp_id Energy Above Hull | Formation Energy | Band Gap
MgCu3AsS4 2225846 0.22 -0.47 0.49
CdIn3Te4As 1226849 0.01 -0.51 0.57
Cs3Sb5Se9 1226687 0.00 -0.83 0.41
Cu2Bi8Pb3Se3S13 1226431 0.01 -0.65 0.35
In4Bi3S10 1224757 0.01 -0.74 1.01
In5SnSb3Te 1224051 0.02 -0.21 0.17
KBi3S5 1223584 0.00 -0.84 1.42
LiGe3SbTe5 1222357 0.01 -0.44 0.83
Rb3Cu3Bi8Sel5 1219864 0.03 -0.75 0.52
Zn3Cu6(AsS3)4 1215617 0.01 -0.58 0.68
ZnIn3AsSe4 1215418 0.00 -0.72 0.90
Rb3Ta2AsS11 1209358 0.00 -1.16 1.89
RbBi3Se5 1209327 0.00 -0.85 0.98
Cs3SbS4 1204783 0.00 -1.10 2.13
K3AsS4 1202105 0.00 -1.11 2.01
RbSb3Se5 1198114 0.00 -0.72 0.68
K3AsSe4 1197539 0.00 -1.04 1.11
Ba3Sb2S7 1195624 0.00 -1.52 1.90
Ba3Sb2Se7 1194583 0.00 -1.45 0.95
Li3SbS3 1194339 0.00 -1.17 2.40
K3SbS3 1194266 0.00 -1.15 2.70
Cs3SbS3 1193894 0.00 -1.15 2.65
Na3SbS3 1193673 0.00 -1.03 2.39
Rb3SbS3 1193319 0.00 -1.18 2.45
Na3SbSe3 1193265 0.00 -1.00 2.00
Cs3SbSe3 1192816 0.00 -1.17 2.27
Pr2Mn3(SbS3)4 1192303 0.03 -1.05 0.18
Sm2Mn3(SbS3)4 1192255 0.03 -1.05 0.14
Nd2Mn3(SbS3)4 1192080 0.03 -1.00 0.15
La3BeSbS7 1191568 0.10 -1.80 1.40
La3BeBiS7 1191180 0.11 -1.80 1.62
Cu6Hg3(SbS3)4 1190563 0.00 -0.45 0.19
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Pr3AsS5CI2 1190453 0.00 -2.03 2.16
Li3SbS3 1177520 0.04 -1.14 2.75
Li3SbS4 850275 0.07 -1.03 2.56
Li3SbS4 768269 0.06 -1.04 1.38
Li3BiS3 766409 0.07 -1.14 1.77
Li3SbS4 760415 0.00 -1.09 2.10
Li3SbS4 756316 0.00 -1.10 2.15
Li3SbS3 755463 0.04 -1.13 2.10
Li3BiS3 753720 0.03 -1.19 2.45
Li3BiS3 753677 0.05 -1.17 2.56
Li3BiS3 753444 0.07 -1.15 1.98

Ba3Bi6PbSel3 669415 0.00 -1.14 0.81
Cs3Bi7Sel2 650619 0.00 -0.89 0.61
TI3Ag3(AsS3)2 583184 0.00 -0.43 1.31
Cs3BiSe3 581738 0.00 -1.16 2.02
TI3Ag3(SbS3)2 581376 0.00 -0.46 1.42

Hg3AsSe4l 570084 0.00 -0.46 1.22

Nb3Sb2Te5 569571 0.00 -0.64 0.84

Hg3AsSe4Br 567949 0.00 -0.52 1.30

CsBi3Se5 567928 0.00 -0.86 1.00
Hg3AsS4Cl1 559355 0.00 -0.51 1.51
K3Cu2(BiS2)5 556522 0.00 -0.85 0.58
Ag3SbS3 555269 0.00 -0.21 1.51

Hg3AsS4Br 555074 0.00 -0.49 1.53

Hg3SbAsS3 554950 0.01 -0.31 1.61

In5(BiS4)3 504646 0.08 -0.69 1.43
CsBi3S5 29531 0.00 -0.86 1.43

Rb3BiSe3 29168 0.00 -1.15 2.07
K3BiSe3 28980 0.00 -1.15 2.06
Li3AsS3 28471 0.00 -1.07 2.28
T1As5S8 28442 0.01 -0.44 1.57
As4(Pb3S5)3 27594 0.00 -0.66 1.58
TISb3S5 27515 0.00 -0.56 1.52
K3AsSe3 18594 0.00 -1.11 2.11
Rb3AsSe4 18305 0.00 -1.06 1.31
Rb3SbSe3 17912 0.00 -1.16 2.30
Cu3SbS3 17691 0.02 -0.27 1.00
Rb3SbSe4 17638 0.00 -1.10 1.33
K3SbSe3 17538 0.00 -1.13 2.29
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Rb3SbS4 17154 0.00 -1.14 2.02
Na3SbTe3 9191 0.02 -0.81 1.45
Na3AsSe3 8686 0.00 -0.96 2.01
Na3AsS3 5830 0.00 -1.01 2.52
K3SbTe3 5626 0 0.95 171
TI3SbSe3 4876 0.00 -0.44 1.01
K3AsS4 3797 0.00 -L11 2.01

Table S3. Mean absolute errors (MAEs) for energy, forces, and stresses across screened
pnictogen chalcogenide materials at final epochs. Each row corresponds to a material, and each
column represents the MAE for energy, forces, and stresses on training (Train), validation
(Val), and test (Test) datasets in meV, meV/A or GPa.

Energy Force Stress
mp-id_Formula

Train Val Test Train Val Test Train Val Test
mp-1224757_In4Bi3S10 0.53 0.34 0.35 35.16 35.44 34.98 0.027 0.029 0.029
mp-1193673_Na3SbS3 0.68 0.61 0.6 23.24 23.23 23.12 0.04 0.039 0.039
mp-1192303_Pr2Mn3shs34 1.01 1.04 1.05 36.17 36.71 36.78 0.031 0.032 0.032
mp-23474_AgBi3S5 0.72 0.63 0.65 30.92 31.02 31.22 0.032 0.033 0.033
mp-555113_Rb3Cu2BiS25 1.32 1.06 0.95 48.16 47.24 48.12 0.055 0.055 0.055
mp-1193265_Na3SbSe3 0.40 0.34 0.35 15.77 15.94 15.96 0.020 0.021 0.021
mp-2227993_Na3MgSbS4 0.36 0.27 0.32 19.89 19.79 20.18 0.014 0.015 0.014
mp-1229202_AgBi3PbS6 0.74 0.80 0.80 29.68 30.28 29.82 0.026 0.026 0.027
mp-1225886_CuBi3PbS6 0.70 0.65 0.68 36.72 37.16 37.59 0.033 0.034 0.034
mp-1194339_Li3ShS3 0.84 0.84 0.81 19.75 20.15 19.88 0.024 0.024 0.024
mp-504646_In5BiS43 0.53 0.44 0.47 31.68 324 31.81 0.022 0.023 0.023
mp-542302_CuBi3PbS6 0.57 0.42 0.42 40.42 40.8 41.06 0.03 0.031 0.032
mp-1229291_AgSh3PbS6 0.73 0.85 0.87 21.97 22.43 22.82 0.023 0.023 0.024
mp-1223584_KBi3S5 0.52 0.55 0.50 26.18 26.62 26.54 0.024 0.024 0.025
mp-766409_Li3BiS3 0.47 0.40 0.46 2211 22.43 22.28 0.02 0.02 0.02
mp-9191_Na3ShTe3 0.67 0.38 0.42 22.25 2191 22.61 0.033 0.033 0.034
mp-1227695_Bi2PbS23 0.69 0.76 0.69 32.83 32.79 33.08 0.029 0.03 0.029
mp-1194583_Ba3Sh2Se7 0.39 0.36 0.33 23.13 23.41 23.53 0.014 0.014 0.013
mp-753720_Li3BiS3 1.18 0.98 1.18 79.71 78.61 78.28 0.135 0.119 0.121
mp-17912_Rb3ShSe3 0.95 1.05 0.95 22.04 22.56 21.84 0.029 0.029 0.029
mp-1225886_CuBi3PbS6 0.70 0.64 0.68 36.72 37.15 37.58 0.032 0.034 0.034
mp-1193894_Cs3SbS3 0.15 0.14 0.14 58.53 60.73 58.92 0.052 0.062 0.090
mp-755463_Li3ShS3 1.71 1.74 1.76 20.87 20.95 21.53 0.027 0.026 0.027
mp-559356_TI3AsS3 1.69 1.68 1.71 20.79 20.85 21.16 0.014 0.014 0.015
mp-554950_Hg3SbAsS3 1.43 1.45 1.43 20.76 20.78 0.77 0.014 0.014 0.014
mp-29295_Sr35bh4S9 1.06 1.14 1.09 75.10 74.17 70.25 0.070 0.070 0.069
mp-2227993_Na3MgSbs4 0.35 0.27 0.31 19.78 19.78 20.18 0.014 0.014 0.014
mp-2223708_K3MgShS4 0.28 0.28 0.25 14.05 14.21 14.30 0.013 0.013 0.013
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Figure S14. The phonon dispersion curves for (a) K3;SbTe; and (b) Na;SbS; comparing density
functional theory (DFT) results with predictions from MatterSim, both in its zero-shot and fine-
tuned forms.

Text S3. Wigner Heat transport theory to Calculate Thermal conductivity

The Wigner formulation of heat transport provides a unified microscopic framework for
describing thermal conduction across materials ranging from crystalline solids to
complex/anharmonic systems.!!'"13 In this formalism, the lattice thermal conductivity is
expressed as the sum of two physically distinct contributions: a particle-like term associated
with populations of propagating phonons, and a coherence term originating from quantum-
mechanical coupling between different phonon modes.!3 This decomposition naturally extends
the traditional phonon gas model (PGM) by explicitly incorporating wave-like heat conduction
channels that become important in strongly anharmonic or structurally complex materials.

The total conductivity is given by:

+ K

Ktotal = Kp c

where ®p and ¢ denote the particle and coherence contributions, respectively.
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1. Particle-like (Population) Contribution (KP)

The particle term corresponds to heat transport carried by phonon wavepackets with well-

defined group velocities and finite lifetimes. It reduces exactly to the conventional solution of

the Boltzmann transport equation (BTE). The expression for p is:
=Y clan @sr@s)
K, =— V)v°(q,5)t(q,s
p NV; q q q

where N is number of sampled g-points in the Brillouin zone, V is unit-cell volume, q is phonon
wavevector, s is phonon branch index, V(4S) is phonon group velocity, T(4,S) is phonon

lifetime (inverse linewidth) and €(4.S) is mode-specific heat.
dn
C(qu) - hw(q's)ﬁ

w(q,5) is phonon frequency, and n(w) is Bose—Einstein population. %p captures the energy
flow carried by phonons viewed as particles whose transport is limited by anharmonic
scattering, isotopic disorder, and structural complexity. This term dominates in weakly

anharmonic crystals with long phonon mean-free paths.

2. Coherence Contribution (K c)

The coherence contribution represents a wave-like channel of heat transport originating from
off-diagonal couplings between phonon modes. This channel is absent in the classical BTE and
becomes relevant when phonon linewidths are comparable to inter-mode spacings. The

coherence term is:

1w C@9)+C(as) o o 2T (9)
= Ny > Ve (Vi (q) —
qs#*s' [ws(CI) - ws'(q)] + Fss'(q)
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vSS (q) . . . A . , r '(q) .
Where, “ a is off-diagonal velocity matrix elements coupling modes s and s, ss is

combined linewidth (mode coupling strength), s s phonon frequencies of the two

modes. e represents heat conduction due to coherent superposition of phonon states. This

channel becomes important when the structure is complex, modes are strongly hybridized,

anharmonicity is strong, and phonon lifetimes are short.

Table S4. Calculated %L (Wm'K-!) Values for Screened Materials at 300 K.

Formula mp_id K, K. K7 4 K Ky K, K’ KY
Li3SbS3 1177520 1.081 0.208 1.289 1.081 0.208 1.289 0.933 | 0.129 1.062
Pr3AsS5CI2 1190453 0.261 0.207 0.468 0.269 0.207 0.54 0.326 | 0.238 0.564
Cu6Hg3(SbS3)4 1190563 1.506 0.145 1.652 1.506 0.145 1.652 1.467 | 0.151 1.618
La3BeBiS7 1191180 0.34 0.223 0.563 0.34 0.223 0.563 0.672 | 0.226 0.898
La3BeShS7 1191568 0.549 0.218 0.768 0.549 0.218 0.768 0.899 | 0.216 1.116
Nd2Mn3(SbS3)4 | 1192080 0.522 0.326 0.849 0.151 0.228 0.379 0.29 0.251 0.542
Sm2Mn3(SbS3)4 | 1192255 0.379 0.32 0.699 0.129 0.243 0.372 0.199 | 0.261 0.46
Pr2Mn3(SbS3)4 1192303 0.494 0.327 0.821 0.143 0.228 0.371 0.289 | 0.255 0.544
Cs3SbSe3 1192816 0.035 0.104 0.138 0.035 | 0.104 0.138 | 0.035 | 0.104 0.138
Na3SbhSe3 1193265 0.244 0.168 0.412 0.244 0.168 0.412 0.244 | 0.168 0.412

Rb3SbS3 1193319 0.092 0.108 0.2 0.092 0.108 0.2 0.092 | 0.108 0.2
Na3SbsS3 1193673 0.12 0.239 0.358 0.12 0.239 0.358 0.12 0.239 0.358
Cs35SbS3 1193894 0.047 0.104 0.15 0.047 0.104 0.15 0.047 | 0.104 0.15
K3SbS3 1194266 0.075 0.146 0.221 0.075 0.146 0.221 0.075 | 0.146 0.221
Li3SbhS3 1194339 0.696 0.314 1.01 0.538 0.258 0.796 0.733 | 0.339 1.072
Ba3Sb2Se7 1194583 0.034 0.149 0.182 0.044 0.158 0.202 0.048 | 0.155 0.203
Ba3Sb2S7 1195624 0.15 0.144 0.294 0.186 0.158 0.343 0.251 | 0.224 0.475
K3AsSe4 1197539 0.058 0.149 0.207 0.047 0.102 0.149 0.067 | 0.132 0.199
RbSb3Se5 1198114 0.375 0.408 0.783 0.126 0.226 0.352 0.13 0.254 0.384
K3AsS4 1202105 0.223 0.18 0.403 0.196 | 0.161 0.358 | 0.263 | 0.192 0.456
Cs3SbS4 1204783 0.012 0.108 0.12 0.009 | 0.083 0.092 | 0.011 | 0.103 0.114
RbBi3Se5 1209327 0.62 0.237 0.237 0.38 0.281 0.661 0.152 | 0.109 0.261
Rb3Ta2AsS11 1209358 0.019 0.089 0.109 0.05 0.176 0.227 0.025 | 0.116 0.141
Znin3AsSe4 1215418 0.087 0.131 0.218 0.062 0.126 0.188 0.085 | 0.127 0.212
Zn3Cu6(AsS3)4 1215617 6.35 0.273 6.62 6.37 0.292 6.661 6.247 | 0.269 6.516
Rb3Cu3Bi8Sel5 1219864 0.121 0.341 0.462 0.121 0.341 0.462 0.121 | 0.341 0.462
LiGe3SbTe5 1222357 1.404 0.161 1.565 1.404 0.161 1.565 0.136 | 0.084 0.22
KBi3S5 1223584 0.414 0.445 0.859 0.107 0.24 0.347 0.115 | 0.272 0.387
In5SnSb3Te 1224051 4.55 0.073 4.624 4.601 0.083 4.685 4.616 | 0.083 4.699
In4Bi3510 1224757 0.058 0.362 0.42 0.016 0.264 0.279 0.019 0.29 0.309
Cu2Bi8Pb3Se3S13 | 1226431 0.261 0.398 0.659 0.025 0.187 0.212 0.06 0.289 0.349
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Cs3Sb5Se9 1226687 0.058 0.362 0.42 0.058 0.362 0.42 0.058 | 0.362 0.42
CdIn3Te4As 1226849 0.624 0.061 0.685 0.587 0.057 0.645 0.601 0.06 0.661
Rb3SbS4 17154 0.048 0.123 0.171 0.034 0.103 0.137 0.064 | 0.136 0.2

K3SbSe3 17538 0.076 0.117 0.193 0.076 0.117 0.193 0.076 | 0.117 0.193
Rb3SbSe4 17638 0.035 0.113 0.148 0.044 0.084 0.128 0.084 | 0.145 0.229
Cu3SbS3 17691 0.454 0.192 0.646 0.3 0.114 0.415 0.646 0.2 0.845
Rb3SbSe3 17912 0.121 0.111 0.232 0.121 0.111 0.232 0.121 | 0.111 0.232
Rb3AsSe4 18305 0.085 0.125 0.21 0.066 0.09 0.156 0.103 | 0.154 0.257
K3AsSe3 18594 0.022 0.138 0.16 0.022 0.138 0.16 0.022 | 0.138 0.16
MgCu3AsS4 2225846 0.706 0.236 0.941 0.706 0.236 0.941 0.706 | 0.236 0.941
TISb3S5 27515 0.177 0.175 0.352 0.112 0.12 0.232 0.138 | 0.199 0.337
As4(Pb3S5)3 27594 0.069 0.315 0.384 0.069 0.315 0.384 0.058 | 0.243 0.301
TIAs5S8 28442 0.026 0.193 0.219 0.011 0.112 0.123 0.022 | 0.204 0.226
Li3AsS3 28471 0.512 0.308 0.82 0.344 0.256 0.6 0.595 | 0.389 0.983
K3BiSe3 28980 0.105 0.134 0.239 0.105 0.134 0.239 0.105 | 0.134 0.239
Rb3BiSe3 29168 0.109 0.115 0.224 0.109 0.115 0.224 0.109 | 0.115 0.224
CsBi3S5 29531 0.411 0.434 0.846 0.117 0.225 0.342 0.091 | 0.222 0.313
K3AsS4 3797 0.229 0.174 0.402 0.2 0.158 0.358 0.263 | 0.192 0.455
TI3SbSe3 4876 0.03 0.098 0.129 0.03 0.098 0.129 0.03 0.098 0.129
In5(BisS4)3 504646 0.339 0.353 0.692 0.064 0.228 0.292 0.091 | 0.244 0.335
Hg3SbAsS3 554950 0.047 0.126 0.173 0.013 0.094 0.107 0.024 | 0.154 0.178
Hg3AsS4Br 555074 0.088 0.148 0.236 0.088 0.148 0.236 0.01 0.036 0.047
Ag35bS3 555269 0.144 0.158 0.302 0.124 0.126 0.25 0.165 | 0.171 0.336
K3Cu2(BiS2)5 556522 0.376 0.477 0.853 0.148 0.262 0.409 0.142 0.33 0.472
Hg3AsS4CI 559355 0.183 0.141 0.325 0.183 0.141 0.325 0.07 0.031 0.101
K3SbTe3 5626 0.063 0.094 0.157 0.063 0.094 0.157 0.063 | 0.094 0.157
CsBi3Se5 567928 0.546 0.236 0.783 0.343 0.272 0.615 0.153 | 0.111 0.264
Hg3AsSe4Br 567949 0.084 0.117 0.201 0.084 0.117 0.201 0.066 | 0.046 0.112
Nb3Sb2Te5 569571 1.572 0.268 1.839 1.572 0.268 1.839 1.572 | 0.268 1.839
Hg3AsSe4l 570084 0.088 0.115 0.202 0.088 0.115 0.202 0.02 0.036 0.056
TI3Ag3(SbS3)2 581376 0.014 0.122 0.136 0.014 0.108 0.122 0.018 | 0.145 0.163
Cs3BiSe3 581738 0.034 0.114 0.149 0.034 0.114 0.149 0.034 | 0.114 0.149
Na3AsS3 5830 0.181 0.221 0.402 0.181 0.221 0.402 0.181 | 0.221 0.402
TI3Ag3(AsS3)2 583184 0.025 0.142 0.166 0.02 0.111 0.13 0.027 | 0.159 0.186
Cs3Bi75el2 650619 0.524 0.285 0.809 0.205 0.19 0.395 0.25 0.241 0.49
Ba3Bi6PbSel3 669415 0.26 0.326 0.587 0.109 0.258 0.367 0.083 | 0.158 0.24
Li3BiS3 753444 0.824 0.249 1.073 1.042 0.158 1.2 0.743 | 0.261 1.003
Li3BiS3 753677 1.641 0.199 1.84 1.641 0.199 1.84 1.929 | 0.227 2.157
Li3BiS3 753720 1.467 0.184 1.651 1.467 0.184 1.651 1.41 0.152 1.561
Li3SbS3 755463 1.957 0.173 2.13 1.957 0.173 2.13 2,172 | 0.129 2.301
Li3SbS4 756316 1.766 0.109 1.874 0.986 0.117 1.104 1.311 | 0.154 1.465
Li3SbS4 760415 1.657 0.106 1.763 1.657 0.106 1.763 1.431 | 0.089 1.52
Li3BiS3 766409 0.28 0.294 0.574 0.309 0.279 0.588 0.325 | 0.277 0.602
Li3SbS4 768269 0.164 0.167 0.33 0.384 0.315 0.698 0.305 | 0.212 0.517
Li3ShS4 850275 1.32 0.125 1.445 1.32 0.125 1.445 1.32 0.125 1.445
Na3AsSe3 8686 0.311 0.155 0.466 0.311 0.155 0.466 0.311 | 0.155 0.466
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Na3SbTe3 9191 | 0153 | 0178 | 0331 | 0153 | 0178 | 0331 | 0153 | 0178 | 0331 |

Text S4: Pearson correlation coefficient (PCC) analysis-based feature analysis

To understand the relationships among the features and exclude the redundant feature from the
database, we employed Pearson correlation coefficients (PCCs). The PCCs is calculated to

elucidate the linear relationships between various input features that influence the thermal

conductivity (“L). The PCC is defined as:'4

cov (xi,xj)
PCC =
0,0
i (S3)
o
where €OV (xi’xf) and “i/j are the covariance of features i and *j and standard deviation of

the feature *i/J, respectively. The positive correlation indicates that both the features are in
tandem and follow a linear relationship, while the negative correlation suggests that features

follow inverse relations with each other.

Text S5: Description to SCALP and Non-SCALP Descriptors

The bond angle (€) quantifies local geometrical distortions around the pnictogen centre, where

compressed O values indicate greater angular distortion, associated with enhanced SCALP

activity, which amplifies lattice anharmonicity and suppresses L. The lone pair distance (le)
describes the spatial extent of lone pair electron density from the pnictogen nucleus and is given
by:13

dy, = 3[1 +0.0128 (8 - 90)]

S24



This relationship shows that enhanced lone-pair activity simultaneously alters both € and dlp,

thereby modifying local bond stiffness and increasing anharmonicity. Similarly, the mismatch

descriptor (%) quantifies the disparity between the number of cations (ncation) and anions (

Manion), defined as '

n n

cation ~ "‘anion

5=

nanion

A larger mismatch leads to increased electronic imbalance between the cation and anion

orbitals, resulting in local bonding distortions that enhance phonon scattering and lower L.

Additionally, we introduce the electron localization function (ELF) denoted as p(1), which

exhibits a negative correlation with L. It measures the spatial localization of electrons around
atoms, particularly pnictogens. Higher p(r) indicates stronger lone pair localization, results in

more asymmetric bonding environments, further enhancing phonon scattering and contributing

to the reduction of L1718 Average polarizability of a compound is often computed as a
weighted average of the atomic polarizabilities of its constituent elements. For a compound

AxByCZ"'with stoichiometry X,Y,Z,-, the average polarizability is:

xa,t+yapg+zap+ ..

a=
xX+ty+z+..

Where %i is polarizability of element i(often taken from experimental or computed atomic

polarizabilities) and X,¥,Z= number of atoms of each element in the formula unit.

Following the framework developed in our previous studies, we adopted two electronic

structure-based descriptors to quantify bonding asymmetry: the ionicity parameter ("o) and
Cqe . . r- 1 r’ .. ... .

hybridization index (" 7 ).1%29 The ¢ quantitatively measures the ionicity of bonds, while

-1
"7 describes the extent of covalency, which can be inferred from the energetic splitting of the
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s- and p-states, and their relative energy is critical for SCALP formation. These parameters are

defined as:
Z”i’"p.i T
' i ]
r_ = -

o
DY
J

T'_l— t J -1

" Zn Yo,

L J

Here, 'p and s denote the valence radii of the p- and s- orbitals of atoms, summed over the

.t r- 1 . .
o and " ™ exhibit strong negative or near-zero

h th )
" and J atoms of the material.192! T

avg
correlations with L, implying that while they describe bond character, their direct influence

K& .
on = L is limited in this dataset.

Table S5. Chemical Bonding Parameters with their Average L (Wm'K-") Values for Screened
Materials at 300 K.

formula mp_id ELF 0 dip | ICOHP | ICOOP ) r;, r_nl o K9

MgCu3AsS4 2225846 | 0.32 109.47 1.25 | -0.71 -0.11 0.25 -0.17 2.94 5.18 0.94

CdIn3Te4As 1226849 | 0.25 109.46 1.25 | -0.11 0.00 0.25 0.06 2.44 6.96 0.66

Cs3Sb5Se9 1226687 | 0.56 104.84 | 1.19 | -0.34 0.00 -0.11 | -0.21 2.38 14.47 0.42

Cu2Bi8Pb3Se3513 | 1226431 | 0.66 103.12 117 | -0.77 0.02 -0.19 -0.36 2.33 4.90 0.41

In4Bi3S10 1224757 | 0.44 95.66 1.07 | -0.01 -0.29 -0.30 | -0.36 2.33 5.29 0.34

In5SnSb3Te 1224051 | 0.75 109.46 | 1.25 | -0.03 0.00 8.00 -0.08 2.22 8.15 4.67

KBi3S5 1223584 | 0.44 106.77 1.21 | 0.00 -0.78 -0.20 | -0.36 2.33 8.90 0.53
LiGe3SbTe5 1222357 | 0.18 107.99 1.23 | -0.03 0.00 0.00 -0.08 2.22 7.67 1.12
Rb3Cu3Bi8Sel5 | 1219864 | 0.15 96.44 1.08 | -0.34 0.00 -0.07 -0.26 2.13 9.59 0.46
Zn3Cub(AsS3)4 | 1215617 | 0.22 103.53 1.17 | -0.23 0.00 0.00 -0.17 2.94 4.46 6.60
Znin3AsSe4 1215418 | 0.61 109.39 1.25 | -0.15 0.00 -0.55 -0.07 2.63 6.11 0.21
Rb3Ta2AsS11 1209358 | 0.28 100.82 1.14 | -4.10 0.05 -0.45 -0.17 2.94 12.02 0.16
RbBi3Se5 1209327 | 0.26 103.91 1.18 | -0.76 0.06 -0.20 | -0.26 213 9.83 0.39
Cs3Sbs4 1204783 | 0.54 109.46 1.25 | -4.10 0.12 0.00 -0.31 2.63 24.63 0.11
K3AsS4 1202105 | 0.51 109.47 1.25 | -0.09 0.00 0.00 -0.17 2.94 18.26 0.41

RbSb3Se5 1198114 | 0.66 10498 | 1.19 | -0.09 0.00 -0.20 | -0.21 2.38 9.57 0.51
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K3AsSe4 1197539 | 0.56 10947 | 1.25 | -0.09 0.00 0.00 -0.07 2.63 18.71 0.19
Ba3Sb2S7 1195624 | 0.66 96.37 1.08 | -0.08 0.00 -0.29 | -0.31 2.63 12.72 0.37
Ba3Sb2Se7 1194583 | 0.72 96.37 1.08 | -1.96 0.03 -0.29 | -0.21 2.38 13.24 0.20

Li3SbS3 1194339 | 0.73 99.25 1.12 | -0.69 0.02 0.33 -0.31 2.63 12.60 0.96

K3SbS3 1194266 | 0.63 101.25 1.14 | -0.50 0.00 0.33 -0.31 2.63 20.79 0.22

Cs3SbS3 1193894 | 0.66 102.57 | 1.16 | 0.00 -1.08 0.33 -0.31 2.63 27.73 0.15

Na3SbS3 1193673 | 0.71 99.05 112 | o0.01 -1.03 0.33 -0.31 2.63 12.30 0.36

Rb3SbS3 1193319 | 0.67 102.00 | 1.15 | 0.01 -1.06 0.33 -0.31 2.63 22.46 0.20
Na3SbSe3 1193265 | 0.74 99.63 112 | -1.63 0.03 0.33 -0.21 2.38 12.69 0.41
Cs3SbSe3 1192816 | 0.62 103.08 | 1.17 | -0.42 0.00 0.33 -0.21 2.38 28.11 0.14

Pr2Mn3(SbS3)4 | 1192303 | 0.80 10244 | 1.16 | -1.19 0.03 -0.25 | -0.31 2.63 6.94 0.58
Sm2Mn3(SbS3)4 | 1192255 | 0.80 102.30 1.16 | -1.12 0.02 -0.25 | -0.31 2.63 7.00 0.51
Nd2Mn3(SbS3)4 | 1192080 | 0.40 10248 | 1.16 | -0.03 0.00 -0.25 | -0.31 2.63 7.25 0.59
La3BeSbS7 1191568 | 0.46 105.82 | 1.20 | -4.86 0.13 -0.29 | -0.31 2.63 10.48 0.88
La3BeBiS7 1191180 | 0.78 107.27 | 1.22 | -0.15 -0.34 -0.29 | -0.36 2.33 10.55 0.67
CubHg3(SbS3)4 | 1190563 | 0.19 100.59 | 1.14 | -0.26 0.00 0.00 -0.31 2.63 4.70 1.64
Pr3AsS5CI2 1190453 | 0.56 97.53 1.10 | -4.58 0.17 -0.43 | -0.17 2.94 9.80 0.52

Li3SbS3 1177520 | 0.69 99.53 112 | -1.03 0.02 0.33 -0.31 2.63 12.60 1.21

Li3Sbhs4 850275 0.73 109.47 | 1.25 | -0.25 0.00 0.00 -0.31 2.63 11.39 1.45

Li3Sbhs4 768269 0.73 100.16 | 1.13 | -0.21 0.00 0.00 -0.31 2.63 11.39 0.52

Li3BiS3 766409 0.39 95.62 1.07 | -0.11 -0.01 0.33 -0.36 2.33 12.71 0.59

Li3Sbs4 760415 0.73 10947 | 1.25 | -0.12 0.00 0.00 -0.31 2.63 11.39 1.68

Li3Sbhs4 756316 0.74 109.47 | 1.25 | -0.09 0.00 0.00 -0.31 2.63 11.39 1.48

Li3SbhS3 755463 0.70 92.89 1.04 | -0.69 0.01 0.33 -0.31 2.63 12.60 2.19

Li3BiS3 753720 0.56 106.53 121 | 0.01 -0.37 0.33 -0.36 2.33 12.71 1.62

Li3BiS3 753677 0.54 98.94 1.11 | 0.00 -0.85 0.33 -0.36 2.33 12.71 1.95

Li3BiS3 753444 0.62 96.25 1.08 | -0.35 0.01 0.33 -0.36 2.33 12.71 1.09

Ba3Bi6PbSel13 669415 0.64 96.78 1.09 | -0.04 0.00 -0.23 | -0.26 213 9.55 0.40
Cs3Bi7Sel2 650619 0.56 96.69 1.09 | -0.28 0.00 -0.17 | -0.26 213 12.55 0.56
TI3Ag3(AsS3)2 583184 0.27 10130 | 1.14 | -0.19 0.00 0.33 -0.17 2.94 5.18 0.16
Cs3BiSe3 581738 0.63 102.67 | 1.16 | -0.39 0.00 0.33 -0.26 2.13 28.23 0.15
TI3Ag3(SbS3)2 581376 0.72 99.16 112 | -3.47 -0.14 0.33 -0.31 2.63 5.51 0.14
Hg3AsSe4l 570084 0.65 94.22 1.05 | -0.06 0.00 -0.20 | -0.07 2.63 4.52 0.15
Nb3Sb2Te5 569571 0.25 109.45 1.25 | -1.55 -0.11 0.00 -0.08 2.22 8.78 1.84
Hg3AsSe4Br 567949 0.63 93.10 1.04 | -0.06 0.00 -0.20 | -0.07 2.63 4.31 0.17

CsBi3Se5 567928 0.56 103.98 1.18 | -0.20 0.00 -0.20 | -0.26 2.13 11.20 0.55
Hg3AsS4Cl 559355 0.64 94.39 1.06 | -2.12 0.03 -0.20 | -0.17 2.94 3.81 0.25

K3Cu2(BiS2)5 556522 0.18 10594 | 1.20 | -0.14 0.00 0.00 -0.36 2.33 10.48 0.58

Ag3SbSs3 555269 0.62 96.56 1.08 | -0.20 0.00 0.33 -0.31 2.63 5.57 0.30
Hg3AsS4Br 555074 0.58 94.93 1.06 | -0.08 0.00 -0.20 | -0.17 2.94 3.91 0.17
Hg3SbAsS3 554950 0.66 96.30 1.08 | 0.00 -1.05 0.67 -0.31 2.63 4.48 0.15
In5(BiS4)3 504646 0.37 96.29 1.08 | 0.03 -0.69 -0.42 | -0.36 2.33 5.28 0.44

CsBi3S5 29531 0.43 105.76 | 1.20 | 0.00 -0.52 -0.20 | -0.36 2.33 10.70 0.50
Rb3BiSe3 29168 0.31 101.57 | 1.15 | -0.76 0.03 0.33 -0.26 2.13 22.96 0.22

K3BiSe3 28980 0.22 100.60 | 1.14 | -0.92 0.02 0.33 -0.26 2.13 21.29 0.24

Li3AsS3 28471 0.63 102.22 | 1.16 | -0.90 0.16 0.33 -0.17 2.94 12.27 0.80
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TIAs5S8 28442 0.59 96.76 1.09 | -0.07 0.00 -0.25 -0.17 2.94 3.74 0.19
As4(Pb3S5)3 27594 0.66 99.61 1.12 | -0.07 0.00 -0.20 | -0.17 2.94 4.35 0.36
TISb3S5 27515 0.69 99.27 1.12 | -0.03 0.00 -0.20 | -0.31 2.63 4.66 0.31
K3AsSe3 18594 0.62 104.26 1.18 | -0.52 0.00 0.33 -0.07 2.63 20.84 0.16
Rb3AsSe4 18305 0.53 109.46 1.25 | -0.11 0.00 0.00 -0.07 2.63 20.17 0.21
Rb3SbSe3 17912 0.72 102.50 1.16 | -3.76 0.17 0.33 -0.21 2.38 22.84 0.23
Cu3sbs3 17691 0.64 98.28 111 | -0.17 0.00 0.33 -0.31 2.63 5.06 0.64
Rb3SbSe4 17638 0.60 109.46 125 | -0.14 0.00 0.00 -0.21 2.38 20.46 0.17
K3SbSe3 17538 0.69 101.68 1.15 | -0.52 0.00 0.33 -0.21 2.38 21.17 0.19
Rb3SbS4 17154 0.56 109.46 1.25 | -0.16 0.00 0.00 -0.31 2.63 20.01 0.17
Na3SbTe3 9191 0.80 99.58 112 | -3.04 0.13 0.33 -0.08 2.22 13.41 0.33
Na3AsSe3 8686 0.67 102.58 1.16 | -0.71 0.00 0.33 -0.07 2.63 12.36 0.47
Na3AsS3 5830 0.62 102.18 1.16 | -0.24 0.00 0.33 -0.17 2.94 11.97 0.40
K3SbTe3 5626 0.72 102.49 1.16 | -3.23 0.15 0.33 -0.08 2.22 21.90 0.16
TI3SbSe3 4876 0.70 100.58 1.14 | -0.09 0.00 0.33 -0.21 2.38 5.83 0.13
K3AsS4 3797 0.50 109.47 1.25 | -0.08 0.00 0.00 -0.17 2.94 18.26 0.41

Table S6. Chemical Bonding Descriptor Correlations highlighting the SCALP and Structural

Distortion mechanisms influencing "L

Correlatio
Mechanism Chemical Bonding Descriptor Design n Parameters
Coefficient
ICOHP X ICOHP(s) ICOHP/ICOOP

SCALP 1C00P(p) 0.38 (s/p)

SCALP ICOHP(s) X cos(ICOHP) 0.36 ICOHP (s)

SCALP cbrt(ICOHP(s) X ICOOP(s)) 0.35 ICOHP/ICOOP (s)

SCALP ICOHP(s) x (ICOOP(s))* 0.34 ICOHP/ICOOP (s)
Structural |
Distortion cosivi(sqrt(a)) 0.58 a
Structural abs((a) - sqrt(6)) 0.54 0
Distortion 1 : &
Structural

; ) - 6,0,
Distortion ((6+6)-a) 0.46 o
Structural

_ ICOHP, 6,

Distortion ((ICOHP + 6) - a) 0.46 a
SCALP +
Structural (ICOHP - a)® 0.45 ICOHP, a
Distortion
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Structural

-1 _ 4
Distortion ((r n t “) 0) 0.45 r., a0

*abs=absolute value function; cbrt=cube root function; cos/sin=trigonometric functions;
exp=exponential function
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