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Fig. S1 | XRD patterns of (YZrCeHf)Ox and CeO2 aerogels. Both show a simple fluorite structure, 
but the peaks for (YZrCeHf)Ox are broader and shifted toward a smaller lattice parameter.

Fig. S2 | Raman spectrum of (YZrCeHf)Ox aerogel. The broad peak at ~ 600 cm-1 has been 
assigned to oxygen vacancies previous high-entropy oxides. 



Fig. S3 | XRF-spectrum of (YZrCeHf)Ox, with inset showing calculated elemental composition 
of cations. Some Cl content (~2.7 keV) is present due to the use of chloride precursors.

Fig. S4 | Comparison of the XPS Ce 3d region with CeO2 and (YZrCeHf)Ox aerogels.   



Fig. S5 | EPR of Co and Fe incorporated HERAs.

Fig. S6 | N2 isotherms of transition-metal–incorporated HERAs, with BET surface area 
indicated.



Fig. S7 | XANES comparison of 2.5Fe-HERA and 20FeHERA     

Table S1 | Comparison of pre-edge peaks for standard Fe3+ compounds and 20Fe-HERA

Material Centroid 
(eV)

Integrated Area Δ
Ref.

α-Fe2O3 7114.4 0.15 This work

α-Fe2O3 7114.4* 0.12 [32]

α-Fe2O3 7114.4 0.12 [31]

FePO4 7114.5 0.32 This work

FePO4 7114.5* 0.34 [32]

FePO4 7114.5 0.25 [31]

20Fe-HERA 7114.1 0.12 This work

* Centroid position adjusted from primary source to account for differences in Fe foil energy 
calibration 
Δ Integrated area calculated after background subtraction and fitting the peak near 7114 eV with a 
single pseudo-Voigt function.



Fig. S8 | CeO2 lattice with Ni (left) and Fe (right). 

Fig. S9 | Molecular orbital diagrams for Fe3+ and Ni2+. 



Fig. S10 | Comparison of 20 and 40 at.% Fe in HERA catalysts. Both catalysts yield entirely CO; 
no CH4 is detected.   

20 30 40 50 60 70

In
te

ns
ity

 (a
.u

.)

2(degrees)

Fig. S11 | X-ray diffraction pattern of 40Fe-HERA. 



Fig. S12 | N2 isotherms showing only slight loss of surface area loss after 90 h at 500 °C. XRD 
patterns remain entirely fluorite with no other phases detected.

Fig. S13 | XPS high-resolution scans of the Ce 3d, Fe 2p, and Cl 2p regions of pristine and post– 
stability tested 2.5Ni-20Fe-HERA. 



Fig. S14 | Transmission electron micrographs and EDS elemental maps of pristine (top) and 
post–stability test (bottom) 2.5Ni-20Fe-HERA . 


