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Fig. S1 | XRD patterns of (YZrCeHf)Ox and CeO, aerogels. Both show a simple fluorite structure,
but the peaks for (YZrCeHf)Ox are broader and shifted toward a smaller lattice parameter.
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Fig. S2 | Raman spectrum of (YZrCeHf)Ox aerogel. The broad peak at ~ 600 cm™! has been
assigned to oxygen vacancies previous high-entropy oxides.
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Fig. S3 | XRF-spectrum of (YZrCeHf)Ox, with inset showing calculated elemental composition
of cations. Some Cl content (~2.7 keV) is present due to the use of chloride precursors.
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Fig. S4 | Comparison of the XPS Ce 3d region with CeO, and (YZrCeHf)O aerogels.
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Fig. S5 | EPR of Co and Fe incorporated HERAs.
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Fig. S6 | N, isotherms of transition-metal—incorporated HERAs, with BET surface area

indicated.



2.5Fe-HERA

Normalized absorption (a.u.)

20Fe-HERA

7100 7110 7120 7130 7140 7150
Enerav (eV)

Fig. S7 | XANES comparison of 2.5Fe-HERA and 20FeHERA

Table S1 | Comparison of pre-edge peaks for standard Fe3* compounds and 20Fe-HERA

Material Ce(n;\;c);id Integrated Area? Ref.
a-Fe,0; 7114.4 0.15 This work
a-Fe,0; 7114.4* 0.12 [32]
a-Fe,0; 7114.4 0.12 31
FePO, 7114.5 0.32 This work
FePO, 7114.5* 0.34 [32]
FePO, 7114.5 0.25 [31]
20Fe-HERA 7114 .1 0.12 This work

* Centroid position adjusted from primary source to account for differences in Fe foil energy
calibration

Alntegrated area calculated after background subtraction and fitting the peak near 7114 eV with a
single pseudo-Voigt function.
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Fig. S8 | CeO, lattice with Ni (left) and Fe (right).
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Fig. S9 | Molecular orbital diagrams for Fe** and Ni**.
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Fig. S10 | Comparison of 20 and 40 at.% Fe in HERA catalysts. Both catalysts yield entirely CO;
no CHy4 s detected.
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Fig. S11 | X-ray diffraction pattern of 40Fe-HERA.
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Fig. S12 | N, isotherms showing only slight loss of surface area loss after 90 h at 500 °C. XRD
patterns remain entirely fluorite with no other phases detected.
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Fig. S13 | XPS high-resolution scans of the Ce 3d, Fe 2p, and Cl1 2p regions of pristine and post—
stability tested 2.5Ni-20Fe-HERA.
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Fig. S14 | Transmission electron micrographs and EDS elemental maps of pristine (top) and
post—stability test (bottom) 2.5Ni-20Fe-HERA .



