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Section S1 Experimental Procedures and Calculated Methods

1.1 Materials

Unless otherwise stated, all chemicals are commercially available and are used as
received. (Tetraaminophthalocyaninato)copper(Il) (CuPc(NH2)4), Carboxylic Multi-
walled Carbon Nanotubes (CNT), Tetrahydrofuran (THF), Sodium tert-butoxide
(NaOtBu), Potassium bromide (KBr), Mesitylene (CoHi2),1,4-Dioxane (CsHsO»),
Trifluoromethanesulfonic acid zinc salt (Zn(CF3SO3)»), Trifluoromethanesulfonic acid
and 2-Dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl (X-Phos) were purchased
from Macklin Chemical Industry Co. 3,7-dibromo-10H-phenothiazine and
Bis(dibenzylideneacetone)palladium (Pd(dba),) were purchased from Bidepharm.
Acetonitrile (ACN) was purchased from Aladdin.

1.2 Synthesis of CuPc-DPTZ-CMPs/CNT composite

A 15 mL Pyrex tube charged with 63.6 mg CuPc(NHz)4 (0.1 mmol), 85.68 mg
DPTZ (0.24 mmol), CNT (40 mg), 5.77 mg Pd(dba): (0.01 mmol), 7.17 mg X-Phos
(0.015 mmol), 11.9 mg KBr (0.1 mmol), 38.5 mg NaOtBu (0.4 mmol), 1,4-dioxane (1
mL) and mesitylene (1 mL) was treated by sonication for 1 h. Subsequently, the mixture
was rapidly frozen using liquid nitrogen. The mixture was degassed by three freeze-
pump-thaw cycles, purged with N2, and stirred at 120 °C for 5 days. After the reaction
was cooled to room temperature, distilled water was added, and the mixture was stirred
for 1 hour, then filtered and sequentially washed with distilled water, tetrahydrofuran,
and acetone. Then, Soxhlet extraction was performed with acetone to remove the
unreacted monomer, and the obtained product was vacuum dried for 24 h, yielding
0.135 g of a black-green powder with a yield of 92%. Similarly, CuPc-DPTZ CMPs
was synthesized without adding CNT. The resulting product was vacuum dried for 24
hours, yielding 0.094 g of a deep green powder with a yield of 94%.

1.3 Electrochemical measurements

For aqueous zinc-organic battery (ZOBs), the electrode was prepared by mixing
active material (CuPc-DPTZ-CMPs/CNT composite, CuPc-DPTZ CMPs or CNT),
carbon black, and Poly tetra fluoro ethylene (PTFE) in a weight ratio of 5:4:1. Then the
slurry was uniformly coated onto stainless steel nets or carbon cloth and dried at 60 °C
for 24 h. The load of the cathode material is 0.39-0.70 mg cm™2. The prepared carbon
cloth, whose surface is coated with CuPc-DPTZ-CMPs/CNT composite, CuPc-DPTZ
CMPs, or CNT slurry, is employed as the positive electrode of the battery; the zinc
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sheet is utilised as the negative electrode, and the 3 M Zn(CF3SO3), aqueous solution
is utilised as the electrolyte to assemble the battery. Cyclic voltammetry (CV),
galvanostatic charge/discharge (GCD), electrochemical impedance spectroscopy (EIS),
and cyclic stability tests were conducted on a CHI760E electrochemical workstation
within the voltage range of 0.6-1.7 V. For the electrochemical test of H" and Zn**
insertion capacity, three electrodes were used, with a stainless steel mesh coated with
CuPc-DPTZ-CMPs/CNT composite paste as the working electrode, a platinum
electrode as the counter electrode, and a saturated Ag/AgCl electrode as the reference
electrode, with 3 M Zn(CF3S03)2/H20 electrolyte, 0.2 M Zn(CF3SOs3)2/acetonitrile
(ACN) non-aqueous electrolyte and 0.635 mM CF3SO3H/H>O electrolyte, respectively.
These measurements were conducted using three distinct three-electrode systems as
described above. The specific capacity (Cm, mAh g™') is calculated from the GCD curve
according to the following equation:

_ fOMixdt

m

Cn (Eq. S1)
In this context, Cmn represents the specific capacity of the battery (mAh g™!), i
denotes the magnitude of the current employed in the test (mA), m signifies the mass
of the active material of the working electrode (g), and At denotes the discharge time
(h).
The gravimetric energy density (E, Wh kg™") of Zn//CuPc-DPTZ-CMPs/CNT
composite battery was estimated based on the following equation:
E=Cy, XAV (Eq. S2)
where AV denotes the average discharge voltage. The energy density was
estimated based on the mass loading of active organic materials in the cathodes!S!l.
1.4 Charge storage kinetics calculations
The capacitive effect of the battery can be evaluated through the analysis of the
CV results obtained at varying scan rates. In general, the relationship between the peak
current (7) and the sweep rate (v) in the CV can be described by the following equation:
i=av? (Eq. S3)
log(i) = blog(v) + log (a) (Eq. S4)
In this context, the tunable parameters a and b are of particular interest. The value
of b determines the insertion/extraction behaviour of Zn?" during redox processes.
Values of b equal to 0.5 and 1.0 indicate diffusion control behaviour and capacitance

control behaviour, respectivelys2],
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The contribution of pseudo-capacitance and diffusion-controlled charge storage

can be quantified further by employing the following formula:
i(E) = Kyv + K,v'/? (Eq. S5)

In this context, the symbols i(E), kiv, and kav'/? are used to represent the total
current response at relative potential (E), the current resulting from the capacitive-
controlled reaction, and the current resulting from the diffusion-controlled reaction,
respectively!>3531, Consequently, the relative contribution of the pseudo-capacitance
and diffusion control processes can be calculated at a fixed potential. The preceding

equation should be rewritten as follows:

KE) — e v'/2 4+ k, (Eq. S6)

Vi/z

1.5 Characterization

Fourier transform infrared spectroscopy (FT-IR) was conducted on a NICOLET
1S10 spectrometer with a reflection mode within the wavenumber range of 4000 to 500
cm. Ultraviolet-visible-near infrared spectrophotometer (UV-vis-NIR
spectrophotometer, UH5700, Hitachi, Tokyo, Japan) within the range of 200-1200 nm.
X-ray diffraction tests were conducted using X-ray diffraction (XRD, XRD-7000 with
Cu Ka radiation source, Shimadzu Corporation of Japan) for the purpose of analysing
the material structure. The sample morphology was observed by field-emission
scanning electron microscopy (SEM, S-4800, Hitachi) and transmission electron
microscopy (TEM, Talos F200S, Thermo Scientific). The porous structures of CuPc-
DPTZ CMPs and CuPc-DPTZ-CMPs/CNT composite were analyzed using N2 (at 77
K) adsorption/desorption from Micromeritics ASAP 2460, with the specific surface
area of the samples (CuPc-DPTZ CMPs and their composite) being determined. The
Brunauer-Emmett-Teller (BET) method was employed to calculate the specific surface
area, while the Non-Local Density Functional Theory (NLDFT) was used to determine
the pore size distribution from the adsorption branch. The ultraviolet-visible (UV-vis)
spectra were obtained with a MAPADA-M9 UV-vis spectrometer. X-ray photoelectron
spectroscopy (XPS, Thermo Scientific K-Alpha, United States) was employed to
investigate the chemical interactions between charge carriers and the surface functional
groups of electrodes (i.e., electroactive materials), thereby elucidating the charge

storage mechanisms.
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Section S2 Supporting Characterizations
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Fig. S1 (a) FT-IR spectra of CuPc(NHz)s, DPTZ and CuPc-DPTZ CMPs. (b) XRD
patterns of CuPc(NH2)s, DPTZ and CuPc-DPTZ CMPs.
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Fig. S2 UV-vis-NIR spectra of CuPc-DPTZ CMPs, CuPc-DPTZ CMPs/CNT

composite and CNT.
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Fig. S3 SEM images of (a-c) CuPc-DPTZ CMPs and (d-f) CuPc-DPTZ-CMPs/CNT

composite.
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Fig. S4 (a) TEM and (b) HR-TEM image of CuPc-DPTZ-CMPs/CNT composite.
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Fig. SS (a) N> adsorption-desorption isotherms and (b) the corresponding pore size
distribution of CuPc-DPTZ CMPs and CuPc-DPTZ-CMPs/CNT composite.

@ 08080808 b _ I
byl &= = = =1 ®) 5 = = =
¥ | A Day 1
Day3 E - - & - = b 3 , !
- B ay
& v e w W W H
Day7 g - - < :-' - — = — L" -
ol s s =89
sessss EEEB
Day 10 b - w ‘W B W Day10v
\ \ 4 _ |
9MH,SO, 6MH,SO;, 12MHCI 6MHCI 9 M NaOH 3 M Zn(CF;S03), 9MH,SO, 12MHCI  9MNaOH 3 M Zn(CF.SOs),

Fig. S6 Digital photographs showing the color evolution of the CuPc-DPTZ-
CMPs/CNT composite in various solutions over time: (a) powder and (b) electrode
sheet, immersed in acid/base solutions of different concentrations and the practical 3 M

Zn(CF3S03); aqueous electrolyte at specified time intervals, respectively.
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Fig. S7 The UV-vis absorption spectra of the CuPc-DPTZ-CMPs/CNT composite
powder over time (1, 3, 7, and 10 days) in different solutions: (a) 9 M H,SO4, (b) 6 M
H>S04, (¢) 12 M HCI, (d) 6 M HCL, (e) 9 M NaOH, and (f) 3 M Zn(CF3S0O3)s.
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Fig. S8 The UV-vis absorption spectra of the CuPc-DPTZ-CMPs/CNT composite
electrode over time (1, 3, 7, and 10 days) in different solutions: (a) 9 M H2SO4, (b) 12
M HCI, (¢) 9 M NaOH, and (d) 3 M Zn(CF3S0O3)s.
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To systematically assess the chemical stability of the CuPc-DPTZ-CMPs/CNT
composite, dissolution tests were conducted on both the powder and the fabricated
electrode sheets. The dissolution behavior of the material in concentrated acids,
concentrated alkali, and 3 M Zn(CF3S03); electrolyte was systematically investigated
by continuously monitoring solution color changes over a period of 1 to 10 days,
combined with UV-vis absorption spectroscopy. As shown in Fig. S5, S6, and S7, the
powder remained stable in 6 M H>SO4, 6 M HCI, 9 M NaOH, and 3 M Zn(CF3S0O3)>
electrolyte: no change in solution color was observed, and no characteristic absorption
peaks were detected in the UV-vis spectra. In contrast, under more extreme acidic
conditions (9 M HzSO4 and 12 M HCI), slight color changes occurred, and weak
characteristic absorption peaks appeared in the UV-vis spectra, indicating minimal
dissolution of the powder. Notably, when the CuPc-DPTZ-CMPs/CNT composite was
fabricated into electrode sheets, no color change or characteristic absorption peaks were
observed even in 9 M H>SO4 and 12 M HCI, demonstrating significantly enhanced
stability upon electrode fabrication. These results confirm that the composite exhibits
excellent chemical stability, which is markedly improved in the electrode form—a

critical attribute enabling superior long-term cycling performance.
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Fig. S9 (a) Cyclic voltammetry profiles of CuPc-DPTZ-CMPs/CNT composite in
various electrolytes at the scan rate 10 mV s'!. (b-e) GCD curves of CuPc-DPTZ-
CMPs/CNT composite in different electrolytes.
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Fig. S10 (a) Capacity-current density plot and (b) capacity-loading amounts plot for
CuPc-DPTZ-CMPs/CNT composite.

Table S1. Summary of the electrochemical properties of representative bipolar organic

electrode materials.

Cathode Redox Specific Capacity =~ Average E Ref.
Groups (mAh g™ discharge
voltage  (Whkg™)
V)
1 PDAN C=N 140.0at 0.1 A g! 0.87 121.1 (6]
-NH-
2 PTD-1 C=S 188.2 at 0.04 1.10 207.0 (87]
C=N Agl!
-NH-
3 PDB C=0 205.0 at 0.05 A g! 0.93 190.1 (s8]
C-S
4 TNP NO» 338.0at0.2 A g! 1.08 365.0 [89]
-NH-
5 PTDM C=N 1183 at0.1 Ag! 1.13 99.0 [810]
-NH-
C=S
6 PONEA/GO C=0 329.0at0.1 A g'! 0.74 242.0 (S1]
-NH-
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7 PANI C=N 200.0 at 0.05 A g! 1.10 220.0 [S12]
-NH-
8 AOS C=N 465.0at0.1 A g! ~1.00 412.0 [S13]
C-N
9 CMP C=0 125.0at 0.2 A g! 0.39 49.0 [S14]
-NH-
10 rGO@CMP C=0 378.0at0.2 A g! 0.66 251.0 [S14]
-NH-
11 IDT C=0 238.0at0.2 A g! 0.67 159.1 [S15]
-NH-
12 QA C=0 212.0at0.2 A g'! 0.76 161.0 [Ste]
-NH-
13 DHHAP C=N 507.0 at 0.05 A g7! ~0.80 385.0 (S17]
-NH-
14 DHTAP-2F C=N 306.0at 0.1 A g! 0.7 214.2 [S18]
-NH-
15 PCTB C=0 136.0at 0.05 A g'! 1.02 138.7 [S19]
-S-
16 CuPc-DPTZ- C=N 155.0at0.4 A g} 1.16 179.8 This
CMPs/CNT -NH- work
composite C-S
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Fig. S11 GCD curves of (a) CuPc-DPTZ CMPs and (b) CNT at different current

densities.
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