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Fig. S1 Particle size distribution diagram of CuHCF-3 obtained from FESEM images.
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Fig. S2 XRD pattern of CuHCF-X.
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Fig. S3 Rietveld refinements of XRD pattern for (a) CuHCF-1, (b) CuHCF-2, and (c)

CuHCF-4.
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Fig. S4 XRD Rietveld refinement structure for (a) CuHCF and (b) CuHCF-3.
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Fig. S5 TG and DSC analysis of (a) CuHCF, (b) CuHCF-1, (¢) CuHCF-2, (d) CuHCF-3,

and (¢) CuHCF-4.
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Fig. S6 XPS survey spectra of CuHCF and CuHCF-3.
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Fig. S7 GCD curves of (a) CuHCF, (b) CuHCF-1, (c) CuHCF-2, (d) CuHCF-3, and (e)

CuHCF-4 at different current densities from 1 to 20 A g.
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Fig. S8 The equivalent circuit diagram.

S-9



a b
. 40{—>5mvs’ __ 40{—>5mvs’
"o 30]——10mvsT "o 30{—10 mVs':
o .
< 5 20 mV s—1 < 20/ —20 mV s-
=y ——50mVs P ——50mVs
= 10 5 104
"
= -10 = -101
L 5 o -20
5 ——70mVs’ 5 304 ——70mV st
O -30 ——100mVs" O Lol ——100mVs"
-404— . : . .
02 04 06 08 10 12 02 04 06 08 10 12
c Potential (V) d Potential (V)
40 —5m\.fs"1 = 40 —5mVs’
".m 30 — 10 mVsi1 ‘To'.\ 30— 1omvs!
< 5 ——20mV's < 20{——20mVs'
~ —— 50 mV s = ——50mV s’
2 10 2 10
g . s "
-10 -
= € 10
o -20 2 20
5 30 —70mvs’ 5 ——70mVs"
S . ——100mVs™ O 30 —— 100 mV s
-40
02 04 06 08 10 12 02 04 06 08 10 12
Potential (V) Potential (V)

Fig. S9 CV curves of (a) CuHCF, (b) CuHCF-1, (¢) CuHCF-2, and (d) CuHCF-4 at

different scan rates.
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Fig. S10 Relationship between the peak current (i) and scan rate (v) for (a) CuHCEF, (b)

CuHCF-1, (c) CuHCF-2, and (d) CuHCF-4.
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Fig. S11 CV curves of CuHCF-3 at 20 mV s ! and the position of redox peaks.
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Fig. S12 Capacitive and diffusion contributions at different scan rates for (a) CuHCF-

1, (b) CuHCF-2, and (c) CuHCF-4.
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Fig. S13 EIS of CuHCF at different temperatures.
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Fig. S14 (a) XRD pattern, (b) high resolution W 4f spectrum, and (¢, d) FESEM images

of h-WO3.

The high resolution XPS of W 4f indicates that the valence state of W is +6 (Fig.

S14b), further verifying the successful synthesis of #-WOs.
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Fig. S15 Electrochemical performance of #-WOs. (a) CV curve at 5 mV s7! along with
the marked positions of redox peaks. (b) CV curves at different scan rates. (c) GCD

plots and (d) SCs at various current densities. (¢) Cyclic stability at 10 A g~'.



Table S1 The cell parameters of CutHCF-X with different doping ratios.

Samples a (A) b(A) c(A)

CuHCF 10.109 10.109 10.109
CuHCF-1 10.121 10.121 10.121
CuHCF-2 10.133 10.133 10.133
CuHCF-3 10.142 10.142 10.142
CuHCF-4 10.150 10.150 10.150
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Table S2 Structural parameters of CuHCF obtained from Rietveld analysis.

Fm-3m space group, a=b=c=10.08 A, o=p=y=90°

Atom X y z Occupation U

Cu 0.50000 0.00000 0.00000 1 0.00633
Fe 0.00000 0.00000 0.00000 0.652 0.00633
C 0.17300 0.00000 0.00000 0.652 0.00633
N 0.28660 0.00000 0.00000 0.652 0.00633
Ol 0.28660 0.00000 0.00000 0.102 0.00633
02 0.25000 0.25000 0.25000 0.396 0.00633
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Table S3. Structural parameters of CuHCF-3 obtained from Rietveld analysis.

Fm-3m space group,a=b=c=10.14 A, a==y=90°

Atom X y z Occupation U

Cu 0.50000 0.00000 0.00000 0.857 0.01

Ni 0.50000 0.00000 0.00000 0.143 0.01

Fe 0.00000 0.00000 0.00000 0.616 0.00633
C 0.17300 0.00000 0.00000 0.616 0.00633
N 0.28660 0.00000 0.00000 0.616 0.00633
Ol 0.28660 0.00000 0.00000 0.140 0.00633
02 0.25000 0.25000 0.25000 0.463 0.00633
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Table S4. ICP-OES analysis results of CuHCF.

Element Cu Fe H,O
Mass percentage (wt.%) 24.44 13.83 30
Mole ratio 0.38 0.24 1.67

The molar ratio between Cu and Ni was obtained from their mass fractions and
atomic masses. The fraction of lattice vacancies (0) is defined as 1—[n(Fe) / (n(Cu) +
n(Ni1))], where n represents the molar quantity. The hydration number x is given by the

molar ratio of water molecules to the anhydrous PBA framework.
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Table S5 ICP-OES analysis results of CuHCF-3.

Element Cu Ni Fe H,O
Mass percentage (wt.%) 20.69 3.17 12.88 31.8
Mole ratio 0.32 0.054 0.23 1.77
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Table S6 Comparison for rate performance of CuHCF-3 with reported cathode materials.

Capacitance/Capacity
Material Electrolyte Rate performance Retention Ref.
(Current density)

CNT/NK-COF 2 M H,SO4 340Fg!'(1Agh 216Fg ' (20A g™ ~64% 1

PANI/rfGO 1 M H,SO,4 346 Fg ' (05A g 225Fg ' (10A g™ ~65% 2

VOHCF 2 M H,;S0,4 67.3mAhg (1A g 39.6 mAh g ' (20 A g™ ~59% 3

MoO; 7.1 M H,SO,4 43mAhg ' (1Agh 20mAhg ' (5A g ~47% 4

VHCF 6 M H,SO, 90mAhg!'(1Agh 65mAhg!'(10A g™ ~72% 5

InHCF 0.05 M H,SO,4 523mAhg'(1Agh 33.7mAh g (6 Agh) ~64% 6

NiPBA 4.5 M H,C,04 ~50 mAh g1 (0.5A g™ ~32mAhg!'(5Ag™") ~64% 7

PAD-COF 1.2 M H,SO, 126 mAh g1 (0.2 A g™ 73mAhg (6 Agh) ~58% 8
CuHCEF-3 0.5 M H,SO4 3I6Fg ' (1Agh 217F g ' (20 A g™ 69% This work
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Table S7 EIS fitting results of the CuHCF-X cathodes.

Cathodes CuHCF CuHCF-1 CuHCF-2 CuHCF-3 CuHCF-4

R.(Q) 1.83 1.72 1.64 1.45 1.87

R, (©) 1.79 1.83 1.43 1.40 1.18
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Table S8 Bulk impedance at different temperatures of CuHCF and CuHCF-3.

Temperature (K) 303 308 313 318 323
Bulk impedance of
2069.0 1722.0 1408.2 1153.0 994.8
CuHCF (Q2)
Bulk impedance of
1013.0 807.4 686.1 604.4 548.8

CuHCF-3 (Q)
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Table S9 Proton conductivity comparison of PBA-based materials.

Proton
Material Sample form Test condition Ref.
conductive
: hohumidi 1.6x1073
VCr-PBA pelletized H1gh' humidity 9
powder environment (293 K)
et 9.33x1073
Im-HAc@Cuncc  Pelletized 98% RH 10
powder (298 K)
leti 4x1073
CupssCop sHCF  Pelletized 100% RH 1
powder (303K)
et 7.43x1078
CuHCF pelletized 0% RH 12
powder (293 K)
pelletized ~ High-humidity 5¢107 This
CuHCEF-3 powder environment (303K) work
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Table S10 Comparison of CuHCF-3 with reported PBA-based and other proton pseudocapacitors.

Cathode//Anode Power density Energy density  Current density  Stability (Cycles/Retention) Ref.
NiFe-PBA//P-MoQOj3 64 kW kg! 17 Wh kg™! 20A gt 5000/100% 13
Cuy ,Cog.1sHCF//h-Mo0O3 21 kW kg™! 21 Whkg™! 10A g! 10000/83% 14
CuCoHCF//MXene 20 kW kg™! 27 Wh kg™! 20A gt 26000/93% 15
VOHCF//HATN 0.35 kW kg! 41.2 Whkg! 1Ag! 200/87% 3
InHCF//DPPZ ~0.2 kW kg! 28 Wh kg™! 6Ag! 3000/76.1% 6
TABQ//TCBQ 2.5kW kg! ~7.5 Wh kg! 5A¢g! 3500/71.2% 16
Wi5049/Ti3C, Ty//RuO,@CC 2 kW kg™! 24.1 Wh kg™! 10A g! 4000/81.5% 17
PYT-GN 4-5//A-Ti3C, Ty 7 kW kg! 13.2 Wh kg™! 3Ag! 5000/91.4% 18
MoO;/Ti;C,T,//NAC 37.5 kW kg™! ~10 Wh kg™! 10A g! 10000/94.2% 19
PPHZ//MnO, 4.8 kW kg! 16.9 Wh kg™! 4Ag! 30000/94.7% 20
CuHCF-3//h-WO; 20 kW kg™! 25 Wh kg™! 10A g! 20000/100% This work
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