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Fig. S1 Particle size distribution diagram of CuHCF-3 obtained from FESEM images.
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Fig. S2 XRD pattern of CuHCF-X.
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Fig. S3 Rietveld refinements of XRD pattern for (a) CuHCF-1, (b) CuHCF-2, and (c) 

CuHCF-4.
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Fig. S4 XRD Rietveld refinement structure for (a) CuHCF and (b) CuHCF-3.
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Fig. S5 TG and DSC analysis of (a) CuHCF, (b) CuHCF-1, (c) CuHCF-2, (d) CuHCF-3, 

and (e) CuHCF-4.
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Fig. S6 XPS survey spectra of CuHCF and CuHCF-3. 
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Fig. S7 GCD curves of (a) CuHCF, (b) CuHCF-1, (c) CuHCF-2, (d) CuHCF-3, and (e) 

CuHCF-4 at different current densities from 1 to 20 A g‒1.
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Fig. S8 The equivalent circuit diagram.
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Fig. S9 CV curves of (a) CuHCF, (b) CuHCF-1, (c) CuHCF-2, and (d) CuHCF-4 at 

different scan rates. 
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Fig. S10 Relationship between the peak current (i) and scan rate (v) for (a) CuHCF, (b) 

CuHCF-1, (c) CuHCF-2, and (d) CuHCF-4.



S-12

Fig. S11 CV curves of CuHCF-3 at 20 mV s –1 and the position of redox peaks.
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Fig. S12 Capacitive and diffusion contributions at different scan rates for (a) CuHCF-

1, (b) CuHCF-2, and (c) CuHCF-4. 
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Fig. S13 EIS of CuHCF at different temperatures.
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Fig. S14 (a) XRD pattern, (b) high resolution W 4f spectrum, and (c, d) FESEM images 

of h-WO3.

The high resolution XPS of W 4f indicates that the valence state of W is +6 (Fig. 

S14b), further verifying the successful synthesis of h-WO3.
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Fig. S15 Electrochemical performance of h-WO3. (a) CV curve at 5 mV s–1 along with 

the marked positions of redox peaks. (b) CV curves at different scan rates. (c) GCD 

plots and (d) SCs at various current densities. (e) Cyclic stability at 10 A g–1.
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Table S1 The cell parameters of CuHCF-X with different doping ratios.

Samples a (Å) b (Å) c (Å)

CuHCF 10.109 10.109 10.109

CuHCF-1 10.121 10.121 10.121

CuHCF-2 10.133 10.133 10.133

CuHCF-3 10.142 10.142 10.142

CuHCF-4 10.150 10.150 10.150
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Table S2 Structural parameters of CuHCF obtained from Rietveld analysis.

Fm-3m space group, a=b=c=10.08 Å, α=β=γ=90°

Atom x y z Occupation U

Cu 0.50000 0.00000 0.00000 1 0.00633

Fe 0.00000 0.00000 0.00000 0.652 0.00633

C 0.17300 0.00000 0.00000 0.652 0.00633

N 0.28660 0.00000 0.00000 0.652 0.00633

O1 0.28660 0.00000 0.00000 0.102 0.00633

O2 0.25000 0.25000 0.25000 0.396 0.00633



S-19

Table S3. Structural parameters of CuHCF-3 obtained from Rietveld analysis.

Fm-3m space group, a = b = c = 10.14 Å, α = β = γ = 90°

Atom x y z Occupation U

Cu 0.50000 0.00000 0.00000 0.857 0.01

Ni 0.50000 0.00000 0.00000 0.143 0.01

Fe 0.00000 0.00000 0.00000 0.616 0.00633

C 0.17300 0.00000 0.00000 0.616 0.00633

N 0.28660 0.00000 0.00000 0.616 0.00633

O1 0.28660 0.00000 0.00000 0.140 0.00633

O2 0.25000 0.25000 0.25000 0.463 0.00633



S-20

Table S4. ICP-OES analysis results of CuHCF.

Element Cu Fe H2O

Mass percentage (wt.%) 24.44 13.83 30

Mole ratio 0.38 0.24 1.67

The molar ratio between Cu and Ni was obtained from their mass fractions and 

atomic masses. The fraction of lattice vacancies (□) is defined as 1−[n(Fe) / (n(Cu) + 

n(Ni))], where n represents the molar quantity. The hydration number x is given by the 

molar ratio of water molecules to the anhydrous PBA framework.
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Table S5 ICP-OES analysis results of CuHCF-3.

Element Cu Ni Fe H2O

Mass percentage (wt.%) 20.69 3.17 12.88 31.8

Mole ratio 0.32 0.054 0.23 1.77
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Table S6 Comparison for rate performance of CuHCF-3 with reported cathode materials.

Material Electrolyte
Capacitance/Capacity 

(Current density)
Rate performance Retention Ref.

CNT/NK-COF 2 M H2SO4 340 F g−1 (1 A g−1) 216 F g−1 (20 A g−1) ~64% 1

PANI/rGO 1 M H2SO4 346 F g−1 (0.5 A g−1) 225 F g−1 (10 A g−1) ~65% 2

VOHCF 2 M H2SO4 67.3 mAh g−1 (1 A g−1) 39.6 mAh g−1 (20 A g−1) ~59% 3

MoO3 7.1 M H2SO4 43 mAh g−1 (1 A g−1) 20 mAh g−1 (5 A g−1) ~47% 4

VHCF 6 M H2SO4 90 mAh g−1 (1 A g−1) 65 mAh g−1 (10 A g−1) ~72% 5

InHCF 0.05 M H2SO4 52.3 mAh g−1 (1 A g−1) 33.7 mAh g−1 (6 A g−1) ~64% 6

NiPBA 4.5 M H2C2O4 ~50 mAh g−1 (0.5 A g−1) ~32 mAh g−1 (5 A g−1) ~64% 7

PAD-COF 1.2 M H2SO4 126 mAh g−1 (0.2 A g−1) 73 mAh g−1 (6 A g−1) ~58% 8

CuHCF-3 0.5 M H2SO4 316 F g−1 (1 A g−1) 217 F g−1 (20 A g−1) 69% This work
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Table S7 EIS fitting results of the CuHCF-X cathodes.

Cathodes CuHCF CuHCF-1 CuHCF-2 CuHCF-3 CuHCF-4
Rct (Ω) 1.83 1.72 1.64 1.45 1.87
Rs (Ω) 1.79 1.83 1.43 1.40 1.18
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Table S8 Bulk impedance at different temperatures of CuHCF and CuHCF-3.

Temperature (K) 303 308 313 318 323 

Bulk impedance of 

CuHCF (Ω)
2069.0 1722.0 1408.2 1153.0 994.8

Bulk impedance of 

CuHCF-3 (Ω)
1013.0 807.4 686.1 604.4 548.8
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Table S9 Proton conductivity comparison of PBA-based materials.

Material Sample form Test condition
Proton 

conductive
Ref.

VCr-PBA pelletized 
powder

High-humidity 
environment

1.6×10−3

(293 K)
9

Im-HAc@CuHCC pelletized 
powder 98% RH

9.33×10−3

(298 K)
10

Cu0.82Co0.18HCF pelletized 
powder 100% RH

4×10−5

(303K)
11

CuHCF pelletized 
powder 0% RH

7.43×10−8

(293 K)
12

CuHCF-3
pelletized 
powder

High-humidity 
environment

5×10−5

(303K)
This 
work
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Table S10 Comparison of CuHCF-3 with reported PBA-based and other proton pseudocapacitors.

Cathode//Anode Power density Energy density Current density Stability (Cycles/Retention) Ref.

NiFe-PBA//P-MoO3 64 kW kg−1 17 Wh kg−1 20 A g−1 5000/100% 13

Cu0.82Co0.18HCF//h-MoO3 21 kW kg−1 21 Wh kg−1 10 A g−1 10000/83% 14

CuCoHCF//MXene 20 kW kg−1 27 Wh kg−1 20 A g−1 26000/93% 15

VOHCF//HATN 0.35 kW kg−1 41.2 Wh kg−1 1 A g−1 200/87% 3

InHCF//DPPZ ~0.2 kW kg−1 28 Wh kg−1 6 A g−1 3000/76.1% 6

TABQ//TCBQ 2.5 kW kg−1 ~7.5 Wh kg−1 5 A g−1 3500/71.2% 16

W18O49/Ti3C2Tx//RuO2@CC 2 kW kg−1 24.1 Wh kg−1 10 A g−1 4000/81.5% 17

PYT-GN 4-5//A-Ti3C2Tx 7 kW kg−1 13.2 Wh kg−1 3 A g−1 5000/91.4% 18

MoO3/Ti3C2Tz//NAC 37.5 kW kg−1 ~10 Wh kg−1 10 A g−1 10000/94.2% 19

PPHZ//MnO2 4.8 kW kg−1 16.9 Wh kg−1 4 A g−1 30000/94.7% 20

CuHCF-3//h-WO3 20 kW kg−1 25 Wh kg−1 10 A g−1 20000/100% This work
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