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Fig. S1. (a) The BET surface area measured from N2 adsorption-desorption isotherms of Ketjen 

Black (KB) and (b) the corresponding BJH pore size distribution.
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Fig. S2. Focused-ion beam scanning electron microscope (FIB–SEM) images of (a) acetylene 

black (AB), (b) graphene (Gr), and (c) KB-based scaffolds.
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Fig. S3. Warburg coefficient ( ) extracted from the low-frequency region of the Nyquist plots.𝜎
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Fig. S4. (a) Cyclic voltammetry (CV) of Zn||acetylene black (AB)/PVDF at various scan rate. (b) 

Electrochemical double-layer capacitance (EDLC) determination of the AB/PVDF scaffold 

derived from the CV curves.
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Fig. S5. (a) CV curves of Zn||Super P (SP)/PVDF at various scan rate. (b) EDLC determination of 

the SP/PVDF scaffold derived from the CV curves.
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Fig. S6. (a) CV curves of Zn||graphene (Gr)/PVDF at various scan rate. (b) EDLC determination 

of the Gr/PVDF scaffold derived from the CV curves.
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Fig. S7. (a) CV curves of Zn||Ketjen Black(KB)/PVDF at various scan rate. (b) EDLC 

determination of the KB/PVDF scaffold derived from the CV curves.
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Fig. S8. SEM images of AB/PVDF, SP/PVDF, Gr/PVDF, and KB/PVDF (from left to right) after 

(a) 20 cycles and (b) 50 cycles of cycling at 2 mA cm–2, 2 mAh cm–2.
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Fig. S9. SEM images of pristine KB5/PVDF5.
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Fig. S10.  of KB-based scaffolds with varying polymer fractions, extracted from the low-𝜎

frequency region of the Nyquist plots.
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Fig. S11. (a) CV curves of Zn||KB5/PVDF5 at various scan rate. (b) EDLC determination of the 

KB5/PVDF5 scaffold derived from the CV curves.
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Fig. S12. (a) CV curves of Zn||KB1/PVDF9 at various scan rate. (b) EDLC determination of the 

KB1/PVDF9 scaffold derived from the CV curves.
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Table S1. Warburg coefficient and apparent diffusion coefficient of scaffolds employing various 

carbon materials.

Charge-transfer 
resistance

(Ω)

Warburg coefficient, 𝜎

(Ω s1/2)

Apparent diffusion 
coefficient

(cm2 s–1)

AB/PVDF 848.3 1154.3 6.7×10–16

SP/PVDF 700.5 1570.6 3.6×10–16

Gr/PVDF 694.9 1376.8 4.7×10–16

KB/PVDF 222.2 14.3 4.4×10–12

The  was obtained by fitting the Z′ vs. ω–1/2 profile in the low-frequency region of the Nyquist 𝜎

plot. The apparent diffusion coefficient ( ) was calculated using equation:𝐷𝑎𝑝𝑝

𝐷𝑎𝑝𝑝 =
𝑅2𝑇2

2𝐴2𝑛4𝐹4𝐶2𝜎2

where  is the gas constant,  the absolute temperature,  the electrode area,  the valence number, 𝑅 𝑇 𝐴 𝑛

 the Faraday constant, and  the bulk electrolyte concentration. Although this analysis relies on 𝐹 𝐶

simplified assumptions, such as treating the low-frequency response as a semi-infinite diffusion 

regime and assuming uniform ion transport across the electrode, which cannot fully capture the 

complexities of porous electrodes, all four carbon-based scaffolds share comparable architectures 

and were tested under identical conditions. Therefore, the extracted values represent meaningful 

apparent diffusion coefficients for relative comparison.
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Table S2. Warburg coefficient and apparent diffusion coefficient of KB-based scaffolds with 

varying polymer fractions.

Charge-transfer 
resistance, Rct

(Ω)

Warburg coefficient, 𝜎

(Ω s1/2)

Apparent diffusion 
coefficient

(cm2 s–1)

KB/PVDF 222.2 14.3 4.4×10–12

KB5/PVDF5 334.3 210.8 2.0×10–14

KB1/PVDF9 1043.1 1527.2 3.8×10–16
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Table S3. Diffusion coefficients and exchange current densities used for COMSOL simulations 

for each scaffold.

Scaffold
Diffusion coefficients

(cm2 s–1)

Exchange current densities 

(A m2)

low  and high ECSA𝜎 5×10–12 5

Medium  and ECSA𝜎 5×10–13 10

High  and low ECSA𝜎 5×10–14 50
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Table S4. Summary of state-of-the-art strategies employing 3D architectures to regulate Zn 

deposition.

Scaffold
Deposition 

mode

Current density &

Areal capacity
CE performance Ref.

KB@Cu Bottom-up 2 mA cm–2, 2 mAh cm–2 99.5%, 700 cycles This work

CNF-Zn Uniform 2 mA cm–2, 1 mAh cm–2 99.5%, 450 cycles [1]

Sn@NHCF Uniform 5 mA cm–2, 1 mAh cm–2 99.5%, 600 cycles [2]

Sn-PCF Uniform 1 mA cm–2, 1 mAh cm–2 95%, 150 cycles [3]

3D Cu@In Uniform 0.5 mA cm–2, 0.5 mAh 

cm–2

98%, 300 cycles [4]

3D graphene Uniform 10 mA cm–2, 1 mAh cm–2 98.3%, 400 cycles [5]

R-Cu2O/CM Uniform 2 mA cm–2, 1 mAh cm–2 99.25%, 400 cycles [6]
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