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Fig. S1. (a) The BET surface area measured from N, adsorption-desorption isotherms of Ketjen

Black (KB) and (b) the corresponding BJH pore size distribution.



Fig. S2. Focused-ion beam scanning electron microscope (FIB—SEM) images of (a) acetylene

black (AB), (b) graphene (Gr), and (c) KB-based scaffolds.
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Fig. S3. Warburg coefficient (9) extracted from the low-frequency region of the Nyquist plots.
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Fig. S4. (a) Cyclic voltammetry (CV) of Zn|jacetylene black (AB)/PVDF at various scan rate. (b)
Electrochemical double-layer capacitance (EDLC) determination of the AB/PVDF scaffold

derived from the CV curves.
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Fig. S5. (a) CV curves of Zn||Super P (SP)/PVDF at various scan rate. (b) EDLC determination of
the SP/PVDF scaffold derived from the CV curves.
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Fig. S6. (a) CV curves of Zn||graphene (Gr)/PVDF at various scan rate. (b) EDLC determination
of the Gr/PVDF scaffold derived from the CV curves.
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Fig. S7. (a) CV curves of Zn|Ketjen Black(KB)/PVDF at various scan rate. (b) EDLC
determination of the KB/PVDF scaffold derived from the CV curves.
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Fig. S8. SEM images of AB/PVDF, SP/PVDF, Gr/PVDF, and KB/PVDF (from left to right) after
(a) 20 cycles and (b) 50 cycles of cycling at 2 mA cm™2, 2 mAh cm™2.



Fig. S9. SEM images of pristine KB5/PVDFS5.
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Fig. S10. 0 of KB-based scaffolds with varying polymer fractions, extracted from the low-

frequency region of the Nyquist plots.
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Fig. S11. (a) CV curves of Zn||[KB5/PVDF5 at various scan rate. (b) EDLC determination of the
KBS5/PVDFS5 scaffold derived from the CV curves.
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Fig. S12. (a) CV curves of Zn||[KB1/PVDF9 at various scan rate. (b) EDLC determination of the
KB1/PVDF9 scaffold derived from the CV curves.

13



Table S1. Warburg coefficient and apparent diffusion coefficient of scaffolds employing various

carbon materials.

harge- fi A iffusi
C argF: transfer Warburg coefficient, o pparent d‘l usion
resistance coefficient
Q gl2

@ @59 (cm? s

AB/PVDF 848.3 1154.3 6.7x10716
SP/PVDF 700.5 1570.6 3.6x1071°
Gr/PVDF 694.9 1376.8 4.7x10716
KB/PVDF 222.2 14.3 4.4x10°12

The o was obtained by fitting the Z' vs. =2 profile in the low-frequency region of the Nyquist
plot. The apparent diffusion coefficient (D app) was calculated using equation:

R*T?

D =—"
R YT

where R is the gas constant, T the absolute temperature, 4 the electrode area, " the valence number,
F the Faraday constant, and C the bulk electrolyte concentration. Although this analysis relies on
simplified assumptions, such as treating the low-frequency response as a semi-infinite diffusion
regime and assuming uniform ion transport across the electrode, which cannot fully capture the
complexities of porous electrodes, all four carbon-based scaffolds share comparable architectures
and were tested under identical conditions. Therefore, the extracted values represent meaningful

apparent diffusion coefficients for relative comparison.
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Table S2. Warburg coefficient and apparent diffusion coefficient of KB-based scaffolds with

varying polymer fractions.

Cha‘rge-transfer Warburg coefficient, o Apparent d‘iffusion
resistance, R, coefficient
(9] 172
(© (257 (em? 57
KB/PVDF 222.2 14.3 4.4x10-12
KB5/PVDF5 334.3 210.8 2.0x10°14
KB1/PVDF9 1043.1 1527.2 3.8x10716
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Table S3. Diffusion coefficients and exchange current densities used for COMSOL simulations

for each scaffold.

Diffusion coefficients Exchange current densities
Scaffold
(cm? s71) (A m?)
low 9 and high ECSA 5x10712 5
Medium ¢ and ECSA 5x10°13 10
High 9 and low ECSA 5x10-14 50
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Table S4. Summary of state-of-the-art strategies employing 3D architectures to regulate Zn

deposition.

Deposition Current density &
Scaffold ‘ CE performance Ref.
mode Areal capacity

KB@Cu Bottom-up 2 mA cm2,2 mAhem?  99.5%, 700 cycles  This work

CNF-Zn Uniform 2mA cm?2, 1 mAhecm2  99.5%, 450 cycles [1]

Sn@NHCF Uniform 5mA cm2, 1 mAh cm™ 99.5%, 600 cycles [2]

Sn-PCF Uniform 1 mA cm™2, 1 mAh cm™ 95%, 150 cycles [3]

3D Cu@In Uniform 0.5 mA cm™, 0.5 mAh 98%, 300 cycles [4]
cm

3D graphene  Uniform 10 mA cm™2, 1 mAhcm2  98.3%, 400 cycles [5]

R-Cu,O/CM Uniform 2mA cm?2, 1 mAhecm2  99.25%, 400 cycles [6]
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