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1. Photocatalysis experiments

The performance of U(VI) photoreduction was studied by using TpPa-Ny
(x=0,1,2,3) materials as photocatalysts and carried out in air, and Xenon lamp with 420
nm cut-off filter as the light source. Parallel experiments were carried out in multiple
double-layer jacketed quartz reactors equipped with cooling water circulation system
(CEL-LABS500, China Education Au-light). Specifically, 2.0~6.0 mg of COFs was
added to 33 mL U(VI) solution (25~70 mg/L, pH 4.0~6.0, containing 3 mL methanol),
then stirred vigorously in the dark for 120 min to achieve adsorption equilibrium before
triggering the photocatalytic reaction. Afterwards, regularly extract 1 ml of solution to
determine the residual U(VI) concentration. The concentration of U(VI) in all
experiments was determined by Arsenazo-III spectrophotometry at 650 nm. The

removal efficiency (R%) was calculated by Eq. (1).

R%:MXIOO%

Co Eq. (1)



2. Characterization

PXRD spectra were obtained on a Bruker D8 diffractometer. FT-IR spectra were
collected on a ThermoFisher Nicolet NEXUS 670 spectrophotometer. The
morphologies of the four COFs were photographed on SEM (JEOL-7800F) and
HRTEM-Mapping (HAADF-STEM, JEOL-2100F). The Solid-state '3C nuclear
magnetic resonance (NMR) spectra were performed using a Bruker AVANCE I1I 600
M spectrometer (600 MHz). The BET specific surface areas were obtained from
Micromeritics ASAP 2020 apparatus. Elemental analysis (EA) was detected by an
EA3000 analyzer (Euro Vector). Zeta Potential analysis (Malvern ZEN3690) was
performed to study the surface charge properties of TpPa-N, materials. XPS analysis
were performed measured on using the Thermo Fisher ESCALAB 250Xi. The UV-
visible diffused reflectance spectra (UV-vis DRS) were tested on a Shimadzu UV-2600
spectrophotometer with BaSQOy, as the background. The photoluminescence (PL) spectra
were excited at 350 nm and the time-resolved photoluminescence (TRPL) spectra were
determined on a HORIBA FluoroMax spectrophotometer. The electron spin resonance
(ESR) spectra were detected by a Bruker MS 5000 instrument under visible light
irradiation (300 W, lamp Au-Light). Free radicals *OH, e, *O," and 'O, were detected
by ESR using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and 2,2,6,6-tetramethyl-4-
piperidinol (TEMP) as trapping agents, respectively.

Transient photocurrent responses (i-f) and electrochemical impedance spectra
(EIS) were carried out on a Shanghai Chenhua CHI 660E workstation with a standard

three-electrode system. The TpPa-N, materials were deposited on the ITO conductive



glass (1.0x1.0 cm?) as the working electrode, Pt plate as the counter electrode and
Ag/AgCl electrode as the reference electrode, as well as 0.25 M Na,SO, solution was
employed as the electrolyte. The Mott-Schottky (M-S) curves were measured at

frequency of 1000, 1500, 2000 Hz, respectively, Exyr = Egagcy + 0.197 V.



3. DFT calculations

The structure information of TpPa-N, materials was simulated by Materials Studio
2023 software. The electrostatic potentials (ESP) of TpPa-N, materials were performed
on Gaussian 09 software package using the B3LYP functional at the hybrid 6-31(d, p)
method. The configuration geometry optimization for O, adsorption on TpPa-Nx
materials was performed using the CASTEP module within Materials Studio 2023
software, employing plane-wave basis functions. The energy cutoff was set at 450 eV,
with the energy convergence threshold of 1.0x10-¢ eV at the gamma point. The vacuum
layer between two neighboring layers of COFs was set to 15 A, which was used to
exclude the interaction between neighboring COFs layers. The adsorption energy (E,4s)
of adsorbate on COFs can be calculated by using following equations by Eq. (2), where
Evowats Esupsrates and Eqgeopare are the total energies of the adsorption system, free

adsorbate and substrate, respectively.

Eads :Etotal - (Esubstrate + Eadsorbate) Eq (2)



4. Figures and tables
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Fig. S1 The FT-IR spectra of TpPa-N1, TpPa-N2-m, TpPa-N2-p and TpPa-N2-o.
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Fig. S2 (a) The XPS survey spectra, (b) high-resolution C 1s spectra, (¢) N 1s spectra
and (d) O 1s spectra of TpPa-N1, TpPa-N2-m, TpPa-N2-p and TpPa-N2-o.
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Fig. S3 The pore size distribution profiles of (a) TpPa-N1, (b) TpPa-N2-m, (c) TpPa-

N2-p and (d) TpPa-N2-o.
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Fig. S4 Tauc plots of (a) TpPa-N1, (b) TpPa-N2-m, (c) TpPa-N2-p and (d) TpPa-N2-o.
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Fig. S5 The Mott-Schottky curves of (a) TpPa-N1, (b) TpPa-N2-m, (c) TpPa-N2-p and
(d) TpPa-N2-o.
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Fig. S6 The steady-state PL spectra of TpPa-1 and TpTt.
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Fig. S7 The TRPL spectra of (a) TpPa-N1, (b) TpPa-N2-m, (c) TpPa-N2-p, (d) TpPa-

N2-o, (e) TpPa-1 and (f) TpTt.
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Fig. S9 Excited-state analysis of TpPa-Ny(x=0,1,2,3) (the blue area represents the hole

distribution and the green area represents the electron distribution).
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Fig. S10 EPR spectra of (a-c) TEMPO-¢ radical for TpPa-N1, TpPa-N2-p and TpPa-
N2-0, and EPR spectra of (d-f) TEMP-'0, radical for TpPa-N1, TpPa-N2-p and TpPa-

N2-o.
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Fig. S11 (a) Photocatalytic H,O, yields of TpPa-N,(x=0,1,2,3) in pure water without
any sacrificial agents (5 mg of catalyst, visible-light irradiation, Air), (b) the control
experiment of photocatalytic H,O, production by TpPa-N2-m under Ar and O,
atmosphere, (c) the free radical trapping experiments during H,O, production by TpPa-
N2-m photocatalysis, (d) testing H,O, generation in U(VI) solution (Co=40 mg/L,
visible-light irradiation, Air).
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Fig. S12 (a-f) The adsorption configuration of O, molecule on TpPa-N,(x=0,1,2,3).
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Fig. S13 (a) FT-IR and (b) XRD spectra of TpPa-N1, TpPa-N2-p and TpPa-N2-o after

photoreduction.
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Table S1 The corresponding photocatalytic U(VI) reduction was given in the literature.

. . Removal
Photocatalysts Experimental conditions Ref
rates
. m/V=0.4 g/L, pH=6.0, 50 mg/L
DAT-porphyrin 98.18% [1]
UV
m/V=0.125 g/L, 50 mg/L U(V]),
TFA-TAT-COF-Q 97% [2]
pH=5.0
. m/V=0.25 g/L, 8 mg/L U(VI),
B-TiO,@Co,P-500 98% 3]
pH=5.0
m/V=0.1 g/L, 50 mg/L U(VI),
g-C3Ny@Znln,Sy 97.4% [4]
pH=7.0
m/V=0.1 g/L, 30 mg/L U(VI),
CdS-Rod 99% [5]
pH=5.0
m/V=0.2 g/L, 400 mg/L U(VI),
PEO-COF 100% [6]
pH=5.0
m/V=0.06 g/L, 25 mg/L U(VI), .
TpPa-N2-m 94.4% This work
pH=6.0, 3 mL CH;0H
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