Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Thermodynamic and Spectroscopic Analysis for Ammonia Absorption Mechanism of Borohydride System

Zixin Xu,^[a] Takahiro Ide,^[a] Norio Ogita,^[a] Shinsuke Ohyagi,^[b] Takashi Wakabayashi,^[b] Toru Hamanaka,^[b] Higuchi Taisho,^[b] Tomoyuki Ichikawa,^[c] Fangqin Guo,*^[a] Hiroki Miyaoka*^[d] and Takayuki Ichikawa^[a]

[a] Z. Xu, N. Ogita, F. Guo, T. Ichikawa

Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan

E-mail: (fang-qin-guo@hiroshima-u.ac.jp)

[b] S. Ohyagi, T. Wakabayashi, T. Hamanaka, H. Taisho

KRI, Inc., 5-11-151 Torishima, Konohana, Osaka, 554-0051, Japan

[c] T. Ichikawa

Hydrolabo Inc., 3-10-31 Kagamiyama, Higashi-Hiroshima, 739-0046, Japan

[d] H. Miyaoka

Natural Science Center for Basic Research & Development, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan

E-mail: (miyaoka@hiroshima-u.ac.jp)

Contents

1.	Experiments and Theoretical Calculations	3
2.	Supporting PCI Figures	5
	Thermodynamics Analysis	
	Raman Spectroscopy	

1. Experiments and Theoretical Calculations

 $NaBH_4$ (99.9% purity) and $LiBH_4$ (99.9% purity) were purchased from Sigma-Aldrich Japan. To prevent moisture absorption and oxidation, all samples were handled in a glovebox (Miwa MDB-2BL) under purified argon

Pressure-composition isotherm (PCI) measurements for NH₃ absorption were conducted using BELSORP-HP-nex (pressure range: 10-4 Pa to ammonia vapor pressure) and BELSORPmax (pressure range: 10⁻⁸ Pa to atmospheric pressure) instruments (MicrotracBEL, Japan). In all the PCI results, the x-axis in the results is expressed in terms of the amount of NH₃ absorbed per mole of absorbent, with units of mol/mol. The LiBH₄ and NaBH₄ powder were mixed with 1:1 molar ratio by hand milling using agate mortar and pestle for 5 minutes. To analyze the adsorption reactions of LiBH₄ and NaBH₄ with NH₃, conventional methods such as powder Xray diffraction are limited due to the presence of liquid-phase intermediates and NH₃ release during pressure reduction. To address this, in-situ spectroscopy was carried out under NH3 atmosphere conditions. The in-situ NMR measurements under ammonia (NH₃) pressure were conducted using a Lambda500 spectrometer (JEOL Co. Ltd.) at a magnetic field strength of 11.7 T. The samples were put into high-pressure valved NMR tubes (Tokyo Chemical Industry Co., Ltd.), which is available for NH₃ in pressure range from vacuum to 0.86 MPa. The chemical shifts were referenced to pure water at 4.21 ppm for ¹H, to a saturated boric acid aqueous solution at 19.49 ppm for ¹¹B, and to NaCl 1M solution at 7.21 ppm for ²³Na, respectively. *In*situ Raman spectroscopy was also performed under NH₃ pressure, using indium seals resistant to NH₃. For the Raman measurements, a monochromatic laser (Spectra-Physics Stabilite2017, λ = 488 nm) is focused on the samples, and quasi-backscattered light is collected. The light is directed to a spectrometer (Czerny-Turner grating spectrometer JASCO TSR-600/SH) via a lens and beam splitter, and then it is detected by a CCD (Princeton Instruments LN-1100PB) cooled by liquid nitrogen. Notably, these techniques exhibit complementary spectral behaviors: while NMR signals sharpen upon liquefaction due to increased molecular mobility, Raman peaks tend to broaden as the system transitions from a rigid solid to a disordered liquid. This contrast offers a powerful approach for cross-validating phase evolution across different states.

Geometric optimizations of Li/NaBH₄(NH₃)_n clusters (n = 0–7) were performed using Gaussian 16 (Rev.C02 x86_64 AVX2-enabled CPUs for Linux OS) at the conventional B3LYP/6-31+G(d,p) level to determine the lowest-energy configurations and support the experimental results. The energy calculations were conducted, and energy parameters were obtained through SHERMO post-processing.^[25]

2. Supporting PCI Figures

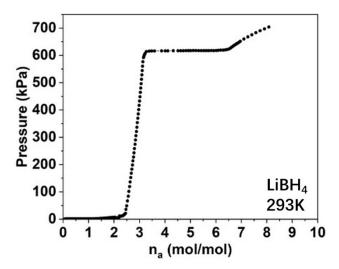
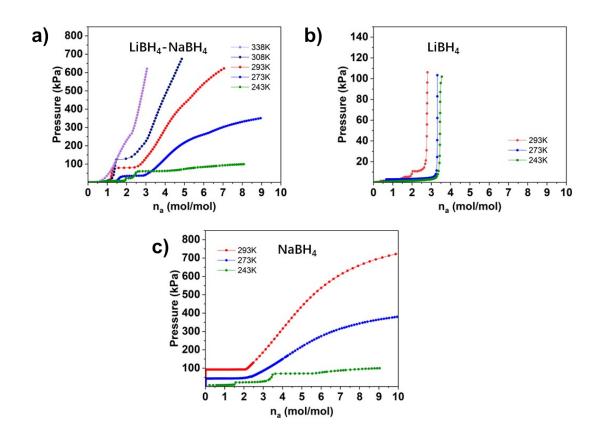



Figure S1. Full range PCI of LiBH₄ at 293K.

Figure S2. (a) Linear PCI Curves of 1:1 LiBH₄-NaBH₄ mixture; (b)Linear PCI Curves of 1:1 LiBH₄; (c) Linear PCI Curves of 1:1 NaBH₄.

3. Thermodynamics Analysis

Based on the plateau pressures (P) and experimental temperatures (T), the enthalpy change (ΔH) and entropy change (ΔS) of the corresponding reactions can be evaluated using the Van 't Hoff equation. Fig S2a and Fig S2b show the Van 't Hoff plots (ln(p/p₀) vs T⁻¹) for LiBH₄ and the LiBH₄-NaBH₄ mixture, respectively. The slope and intercept of the vertical axis represent the values of ΔH and ΔS , respectively.

$$ln\frac{P}{P_0} = \frac{\Delta H}{RT} - \frac{\Delta S}{R}$$

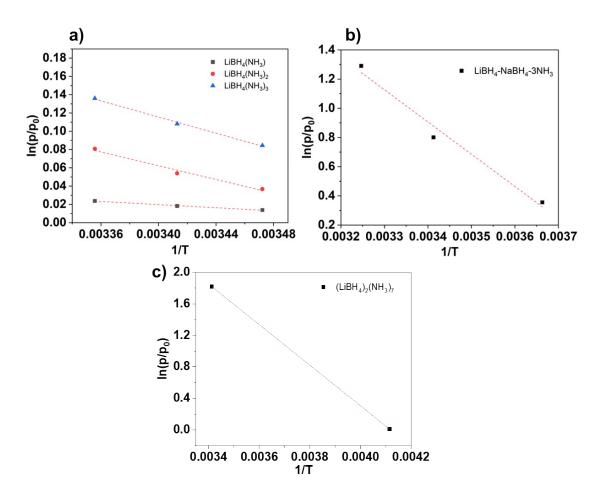


Figure S3. (a) Van't Hoff plots of LiBH₄; (a) Van't Hoff plots of LiBH₄-NaBH₄.

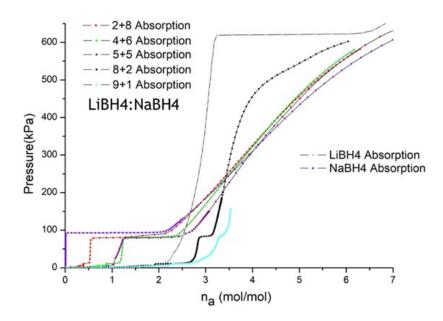


Figure S4. PCI curves of LiBH₄-NaBH₄ mixtures with different LiBH₄:NaBH₄ ratios at 293K.

4. Raman Spectroscopy

To validate the analyses of coordination compounds and solutions, in-situ Raman spectroscopy measurements were conducted for LiBH₄, NaBH₄, and the LiBH₄-NaBH₄ mixed system. All peaks observed in the results were thoroughly identified as shown in Table S1 and Table S2.^[16–24] To avoid confusion, the peak nomenclature follows the conventions established in references.^[18,19]

Table S1. Raman Peak Assignments of Pure LiBH $_4$ and Pure NaBH $_4$ at 293 K.

Materials	Vibration Mode	Symmetry	Wavenumber/cm ⁻¹	Note
	V ₄	A_g	1098	B-H bending
	V ₄ `	A_g	1240	B-H bending
	V ₂	B_{3g}	1289	B-H bending
	V ₂ `	A_g	1320	B-H bending
	2v ₄	A_g	2156	Overtone of bending
LiBH ₄				vibration v_4
	V ₃	A_g	2274	B-H stretching
	<i>V</i> ₁	A_g	2298	Tetrahedral B-H
				symmetric stretching
	<i>v</i> ₃ `(sh)	A_g	2321	B-H stretching
	V_4	F_2	1127	B-H bending
	V_2	A_1	1279	B-H bending
	$2v_4$	E ₁	2197	Overtone of bending
				vibration v_4
NaBH₄	2 <i>v</i> ₄ `	A_1	2228	Overtone of bending
				vibration v_4
	V ₁	A_1	2334	Tetrahedral B-H
	_			symmetric stretching

 v ₂₊ v ₄ (sh)	E	2408	Combination band
$2v_2$	A_1	2541	Overtone of bending
			vibration v_2

^{*}sh=shoulder peak

 $\textbf{Table S2.} \ \ \text{Raman Peak Assignments of NH}_{3} \ \text{in LiBH}_{4} \ \text{and NaBH}_{4} \ \text{after NH}_{3} \ \text{Absorption at 293 K}.$

Materials	Vibration Mode	Symmetry	Wavenumber/cm ⁻¹	Note
	V _{1(sh)}	A_g	3218	N-H stretching
NIII /L:DIII)	V ₂	E_g	3293	N-H symmetric
NH ₃ (LiBH ₄)				stretching
	V ₂ `	E_g	3380	N-H stretching
	<i>V</i> ₁	A_g	3241	N-H stretching
NIII (NaDIII)	V ₂	E_g	3301	N-H symmetric
NH ₃ (NaBH ₄)				stretching
	V ₂ `	E_g	3379	N-H stretching

^{*}sh=shoulder peak