Supplementary Information (SI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2025

CVD-Grown Phase-Pure V₂C Nanosheets with Pseudocapacitive Behavior for Fast and Stable Lithium-Ion Storage

Wei Ding¹, Deniz Cakir²,*, Laxmi Raj Jaishi¹, Jiahui Yuan^{1, 3}, Mohd Anas⁴, Parashu Kharel⁴, Bin

Yao⁵, Xiaojun Xian^{1,*}

- 1. McComish Department of Electrical Engineering and Computer Science, Jerome J. Lohr College of Engineering, South Dakota State University, Brookings, South Dakota 57007, USA
- 2. Department of Physics & Astrophysics, University of North Dakota, Grand Forks, North Dakota 58202, USA
- 3. Department of Agricultural and Biosystems Engineering, South Dakota State University, Brookings, South Dakota 57007, USA
- 4. Department of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings, South Dakota 57007, USA
- 5. Department of Chemistry, Biology, and Health Sciences, South Dakota School of Mines and Technology Rapid City, South Dakota 57701, USA

Corresponding Authors

*E-mail (D. Cakir): deniz.cakir@UND.edu

*E-mail (X. Xian): xiaojun.xian@sdstate.edu

Table of contents

Figure S1 XPS survey spectra for the V₂C nanosheets.

Figure S2 Charge/discharge voltage curve as a function of specific capacity of V_2C nanosheets at different current density ranging from 0.1 to 5 A $\rm g^{-1}$

Figure S3 Charge/discharge voltage curve as a function of specific capacity of V_2C nanosheets at different cycles at 0.1 A g^{-1}

Figure S4 Charge/discharge voltage curve as a function of specific capacity of V_2C nanosheets at different cycles at 1 A g^{-1}

Figure S5 Equivalent circuit used for fitting EIS data

Figure S6. XPS spectra of C 1s in the V₂C electrode after 100 cycles.

Table S1 XPS fitting result for V₂C nanosheets

Table S2 Comparison of V₂C anodes reported in the literatures of lithium-ion batteries

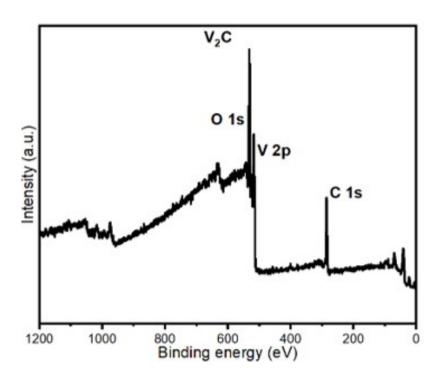


Figure S1. XPS survey spectra of the V_2C nanosheets.

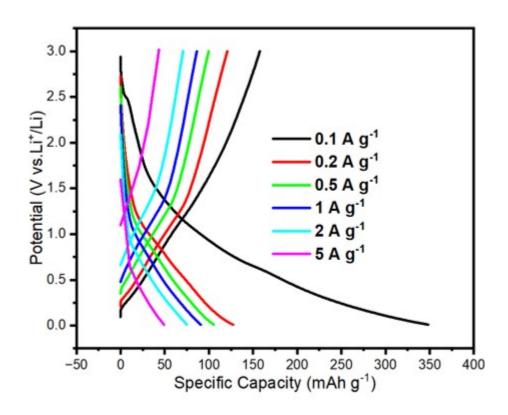
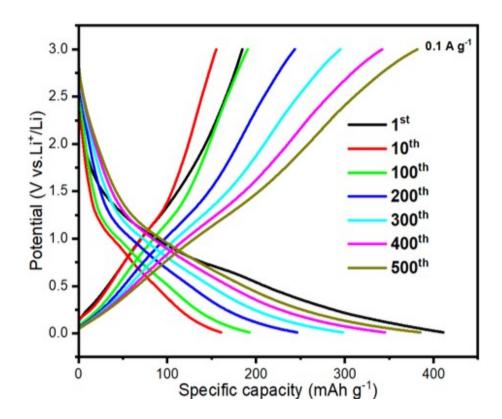
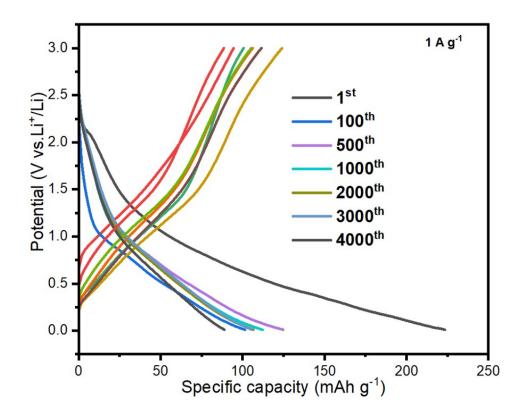




Figure S2. Charge/discharge voltage curve as a function of specific capacity of V_2C nanosheets at different current density ranging from 0.1 to 5 A g^{-1} .

Figure S3. Charge/discharge voltage curve as a function of specific capacity of V_2C nanosheets at different cycles at 0.1 A g^{-1} .

Figure S4. Charge/discharge voltage curve as a function of specific capacity of V_2C nanosheets at different cycles at 1 A g^{-1} .

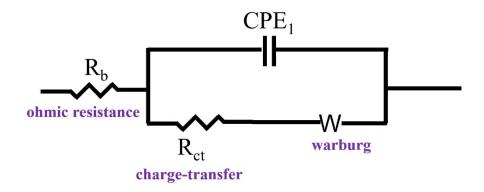


Figure S5. Equivalent circuit used for fitting EIS data.

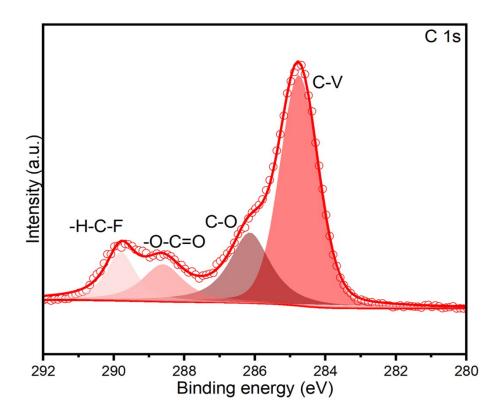


Figure S6. XPS spectra of C 1s in the V₂C electrode after 100 cycles.

Table S1. XPS fitting result for V_2C nanosheets

Material	Element	Position (eV)	FWHM	Area	Bond
V ₂ C	C 1s	282.79	0.56	1186.483	C-V
		284.57	1.07	4931.45	C-C
		285.27	1.55	2660.01	С-О
	V 2p	513.4 <u>9</u>	1.19	2920.65	V2 ⁺
		515.53	2.61	8627.52	V3 ⁺
		516.83	2.02	5389.38	$V4^+$
		521.49	1.94	1457.32	V2 ⁺
		523.84	2.26	2963.53	V3 ⁺
V ₂ C (100cycles)	C 1s	284.72	1.27	5840.72	C-V
		286.08	1.70	2905.68	C-O
		288.57	1.52	1212.10	O-C=O
		289.85	1.23	1133.30	-H-C-F-
	V 2p	516.41	1.80	1897.11	V3+
		517.25	1.30	2252.24	V4+
		524.25	2.55	1551.90	V3+

Table S2. Comparison of V_2C anodes reported in the literatures of lithium-ion batteries.

Materials	Current density (A g ⁻¹)	Cycle numbers	Specific capacity (mAh g ⁻¹)	References
V ₂ C nanosheets	0.1	500	385.2	This work
V ₂ C MXene	0.074	100	254	1
V ₂ C MXene	0.1	140	257	2
V_2C	0.1	300	223.6	3
$V_{\underline{2}}\underline{C}$	0.1	10	228	4
V_2C	0.1	120	172.2	
V_2C-5	0.1	120	190	
V ₂ C-10	0.1	120	429.5	5
V ₂ C-20	0.1	120	281.9	
V ₂ C-30	0.1	120	235.7	

References

- 1. J. Zhou, S. Gao, Z. Guo and Z. Sun, Ceramics International, 2017, 43, 11450-11454.
- 2. F. Liu, J. Zhou, S. Wang, B. Wang, C. Shen, L. Wang, Q. Hu, Q. Huang and A. Zhou, *Journal of The Electrochemical Society*, 2017, **164**, A709.
- 3. R. J. Liu, L. X. Yang, Y. Wang, H. P. Bu, H. J. Liu and C. L. Zeng, *Journal of Solid State Electrochemistry*, 2022, **26**, 831-842.
- 4. Y. Guan, B. Xiao, X. Zhang, L. Xiong, J. Liu, Y. Ding, Z. Wang, Y. Pi and Y. Cong, Journal of Alloys and Compounds, 2025, 1010, 177171.
- 5. F. Liu, Y. Liu, X. Zhao, K. Liu, H. Yin and L. Z. Fan, Small, 2020, 16, 1906076.