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S1 (a) XRD patterns and (b) Raman spectra of Ni-NC and NC.
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Fig. S2 (a) C 1s and (b) N 1s XPS spectra of Ni-NC and NC.
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Fig. S3 FT-IR of BT, NC/BT and Ni-NC/BT.
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Fig. S4 N, adsorption-desorption isotherms and BET surface areas of Ni-NC/BT, NC/BT, and BT.
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Fig. S5 FE-SEM images of (a) BT and (b) NC/BT.
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Fig. S6 (a) Ba 2d, (b) Ti 2p and (c) O 1s XPS spectra of Ni-NC/BT, NC/BT, and BT.
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Fig. S7 (a) Time dependence in piezocatalytic CO production using Ni-NC/BT under sonication with
different catalyst amounts. (b) Performance testing of piezocatalytic CO production for BT and Ni-
NC, and Ni-NC in 5 h of sonication. (c) Time dependence in piezocatalytic CO production over BT,

NC/BT, Ni-NC/BT, and physical mixture of and Ni-NC and BT.
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Fig. S8 Performance testing of piezocatalytic CO and H,O» production for Ni-NC/BT in 3h of

sonication.
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Fig. S9 FE-SEM image of Ni-NC/BT after three cycles of piezocatalytic CO, reduction.
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Fig. S10 (a) TG-DTA curves of Ni-NC/BT before and after reaction, and (b) Ni 2ps,» XPS spectra of

large amount of Ni-NC deposited on BT before and after reaction.
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Fig. S11 CO; and Ar atmosphere with sonication for BT, NC/BT, and Ni-NC/BT.
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Table S1 FT-EXAFS fitting parameters at the Ni K-edge for various samples.

Sample Path CN* Sp2 R(AP o¢%(A%)° AEq(eV)! R factor

Nifoil Ni-Ni 12* 0.786 2.4827 0.00597 6.456 0.0015

NiPc Ni-N 4* 0.853* 1920 0.002 2.775 0.0036

Ni-NC Ni-N 43  0.853* 2.05 0.001 -8.066 0.0155

“CN, coordination number.

bR, the distance to the neighboring atom.

‘o2, the Mean Square Relative Displacement (MSRD).
YAE,, inner potential correction.

R factor indicates the goodness of the fit.

So? was fixed to 0.853 according to the experimental EXAFS fit of Ni Pc reference by fixing

coordination numbers as the known crystallographic value.

Fitting range: 3.0 <k (A)< 12 and 1.0 <R (A) < 3.0 (Ni-NC). A reasonable range of EXAFS fitting
parameters: 0.800 < Sp2 < 1.000; CN > 0; 6>> 0 A%; |AEo| < 10 eV; R factor < 0.02.
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Table S2 Comparison of the CO production rates of different catalysts in piezocatalysis.

Main
Piezocatalysts Energy source Reaction condition products Ref.
(umol-h~!.g™)
Ni-NC/BT 55W, 48 kHz 0.5 mg sample +15 mL DI 75.8 This work
1 mg sample+5 mL of 0.35 M |
BaTiOs/GO 120 W, 80 kHz 1344
Naz2S-9H20 and 0.25 M Na2SO03
5 mg sample+10 mL of 0.35 M 3
Au/ZnO 120 W, 80 kHz 88.7
Naz2S-9H20 and 0.25 M Na2S03
] 40 mg sample+500 mL of 0.1 M 3
Co-N-C@BaTiOs 300 W, 50 kHz ] 261.8
KHCOs3 (pH=8.57) solution
Li-doped
) ) 10 mg KNLN+10mLof 0.1M 4
potassium sodium 60 W, 50 kHz 438
Na>S03
niobate (KNLN)
Smg sample + 5 mL DI 34
BaTiOs 0.7W/em?,40kHz ~ 5mg sample + 5 mL DI +0.35 M 3 5
Naz2S-9H20 and 0.25 M Na2SO03
5 mg sample + 5 mL DI+
MoS2 100 W, 40 kHz (sacrificial agent) 0.35 M 543.1 6
Na2S-9H20 and 0.25 M Na2SO3
Nb doped PZT 40 kHz 10 mL of 0.1 M Na2SO3 789 7
12 mg sample + 2 mL of DI+22 mL 3
BiFeO3—x 100 Hz 8.87
acetonitrile + 6 mL triethanolamine
Bi7TisNbO2: 9
240 W,40 kHz 10mg sample + 100 mL of DI 19.10
nanosheets
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Table S3 The performance comparison of piezocatalytic H, production via water splitting over

different materials.

Main products

Piezocatalysts Energy source Reaction condition (umol-h-1-g) Ref.
Ni-NC/BT 4140 This work
NC/BT 55W, 48 kHz 0.5 mg sample +15 mL DI 2628 This work
BT 1820 This work
10nm BaTiOs 40 kHz 5 mg sample + 10 mL DI 655 10
V-NaNbOs 192 W, 68 kHz 10 mg sample + 45 mL DI 346.2 1l
ZnS NSs 100 W, 27 kHz 5 mg sample+ 10 mL DI 1080 12
C doped KNbO3 - 50 mg sample + 25 mL DI 524.51 13
Bi4OsBr 240, 4 kHz 10 mg sample + 100 mL DI 1149 14
Co4N-WNx ~75 kHz 4 mg sample + 10 mL DI 262.7 15
BisFesOo 200 W, 40 kHz 2 mg sample + 10 mL DI 1058 16
BisTaOsCl 110 W, 37 kHz 10 mg sample + 30 mL DI 1500 17
H/C-CdS 240 W, 40 kHz 2 mg sample + 15 mL DI 3190 18
BiFeO3@COF 100 W, 40 kHz 5 mg sample + 10 mL DI 1416.4 19
RbBiNb20O7/
poly(tetrafluoroet 240 W, 68 kHz 20 mg sample + 30 mL DI 260.79 20
hylen)
N doped MoC 100 W, 40 kHz 10 mg sample + 20 mL DI 1690 21
CNs@Ag 180 W,40kHz 2 mg sample + 100 mL DI 7900 22
BisTis0n@Au 100 W,40kHz 20 mg sample + 10 mL DI 194.67 23
g-C3N4 240 W,40kHz 2 mg sample + 100 mL DI 8970 24
LazNiO4 70 W, 40 kHz 10 mg sample + 80 mL DI 1097 25
BaTiOs.x 100 W, 40 kHz 100 mg sample +100 mL DI 132.4 26
Bi2M0Os-BaTiO3 300 W 50 mg sample +200 mL DI 152.57 27
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Table S4 Elemental analysis of Ni-NC/BT before and after reaction.

Sample Ni/(Ni+Ba+Ti)*
(mol%)
Ni-NC/BT (before reaction) 0.56
Ni-NC/BT (before reaction) 0.49

*Determined from XRF analysis
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Table S5 Summarizes the values of Eg, VBmax, Evs, and Ecg of BT, NC/BT, and Ni-NC/BT.

Eg VBax Evs ECB
Samples
(eV) (Et, V vs. NHE) (V vs. NHE) (V vs. NHE)
BT 3.54 2.66 2.72 -0.88
NC/BT 3.47 2.64 2.70 -0.83
Ni-NC/BT 3.45 2.59 2.65 -0.86

*Enne = © + Er - 4.44 (where Enue is the standard electrode potential and @ is the work

function of XPS, which is 4.5 eV in this work)*®
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