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Fig. S1 (a) XRD patterns and (b) Raman spectra of Ni-NC and NC. 
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Fig. S2 (a) C 1s and (b) N 1s XPS spectra of Ni-NC and NC. 
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Fig. S3 FT-IR of BT, NC/BT and Ni-NC/BT. 
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Fig. S4 N2 adsorption-desorption isotherms and BET surface areas of Ni-NC/BT, NC/BT, and BT. 
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Fig. S5 FE-SEM images of (a) BT and (b) NC/BT. 
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Fig. S6 (a) Ba 2d, (b) Ti 2p and (c) O 1s XPS spectra of Ni-NC/BT, NC/BT, and BT. 

  



S8 

 

 

 

 

 

 

 

 

Fig. S7 (a) Time dependence in piezocatalytic CO production using Ni-NC/BT under sonication with 

different catalyst amounts. (b) Performance testing of piezocatalytic CO production for BT and Ni-

NC, and Ni-NC in 5 h of sonication. (c) Time dependence in piezocatalytic CO production over BT, 

NC/BT, Ni-NC/BT, and physical mixture of and Ni-NC and BT. 
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Fig. S8 Performance testing of piezocatalytic CO and H2O2 production for Ni-NC/BT in 3h of 

sonication. 
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Fig. S9 FE-SEM image of Ni-NC/BT after three cycles of piezocatalytic CO2 reduction. 
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Fig. S10 (a) TG-DTA curves of Ni-NC/BT before and after reaction, and (b) Ni 2p3/2 XPS spectra of 

large amount of Ni-NC deposited on BT before and after reaction. 
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Fig. S11 CO2 and Ar atmosphere with sonication for BT, NC/BT, and Ni-NC/BT. 
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Table S1 FT-EXAFS fitting parameters at the Ni K-edge for various samples. 

Sample Path CNa S0
2 R(Å)b σ2(Å2)c ΔE0(eV)d R factor 

Ni foil Ni-Ni 12* 0.786 2.4827 0.00597 6.456 0.0015 

Ni Pc Ni-N 4* 0.853* 1.920 0.002 2.775 0.0036 

Ni-NC Ni-N 4.3 0.853* 2.05 0.001 -8.066  0.0155 

aCN, coordination number. 

bR, the distance to the neighboring atom. 

cσ2, the Mean Square Relative Displacement (MSRD).  

dΔE0, inner potential correction.  

R factor indicates the goodness of the fit. 

S0
2 was fixed to 0.853 according to the experimental EXAFS fit of Ni Pc reference by fixing 

coordination numbers as the known crystallographic value. 

Fitting range: 3.0 ≤ k (Å) ≤ 12 and 1.0 ≤ R (Å) ≤ 3.0 (Ni-NC). A reasonable range of EXAFS fitting 

parameters: 0.800 < Ѕ0
2 < 1.000; CN > 0; σ2 > 0 Å2; |ΔE0| < 10 eV; R factor < 0.02. 
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Table S2 Comparison of the CO production rates of different catalysts in piezocatalysis. 

Piezocatalysts Energy source Reaction condition 

Main 

products 

(μmol·h–1·g–1) 

Ref. 

Ni-NC/BT 55W, 48 kHz 0.5 mg sample +15 mL DI 75.8 This work 

BaTiO3/GO 120 W, 80 kHz 
1 mg sample+5 mL of 0.35 M 

Na2S·9H2O and 0.25 M Na2SO3 
134.4 1 

Au/ZnO 120 W, 80 kHz 
5 mg sample+10 mL of 0.35 M 

Na2S·9H2O and 0.25 M Na2SO3 
88.7 2 

Co-N-C@BaTiO3 300 W, 50 kHz 
40 mg sample+500 mL of 0.1 M 

KHCO3 (pH=8.57) solution 
261.8 3 

Li-doped 

potassium sodium 

niobate (KNLN) 

60 W, 50 kHz 
10 mg KNLN+10mLof 0.1M 

Na2SO3 
438 4 

BaTiO3 
0.7 W/cm2, 40 kHz 

5mg sample + 5 mL DI 3.4 

5 5mg sample + 5 mL DI +0.35 M 

Na2S·9H2O and 0.25 M Na2SO3 
63.3 

MoS2 100 W, 40 kHz 

5 mg sample + 5 mL DI+ 

(sacrificial agent) 0.35 M 

Na2S·9H2O and 0.25 M Na2SO3 

543.1 6 

Nb doped PZT 40 kHz 10 mL of 0.1 M Na2SO3 789 7 

BiFeO3−x 100 Hz 
12 mg sample + 2 mL of DI+22 mL 

acetonitrile + 6 mL triethanolamine 
8.87 8 

Bi7Ti4NbO21 

nanosheets 
240 W,40 kHz 10mg sample + 100 mL of DI 19.10 9 
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Table S3 The performance comparison of piezocatalytic H2 production via water splitting over 

different materials. 

Piezocatalysts Energy source Reaction condition 
Main products 

(μmol·h–1·g–1) 
Ref. 

Ni-NC/BT 

55W, 48 kHz 0.5 mg sample +15 mL DI 

4140 This work 

NC/BT 2628 This work 

BT 1820 This work 

10nm BaTiO3 40 kHz 5 mg sample + 10 mL DI 655 10 

V-NaNbO3 192 W, 68 kHz 10 mg sample + 45 mL DI 346.2 11 

ZnS NSs 100 W, 27 kHz 5 mg sample+ 10 mL DI 1080 12 

C doped KNbO3 - 50 mg sample + 25 mL DI 524.51 13 

Bi4O5Br2 240, 4 kHz 10 mg sample + 100 mL DI 1149 14 

Co4N-WNx ∼75 kHz 4 mg sample + 10 mL DI 262.7 15 

Bi2Fe4O9 200 W, 40 kHz 2 mg sample + 10 mL DI 1058 16 

Bi4TaO8Cl 110 W, 37 kHz 10 mg sample + 30 mL DI 1500 17 

H/C-CdS 240 W, 40 kHz 2 mg sample + 15 mL DI 3190 18 

BiFeO3@COF 100 W, 40 kHz 5 mg sample + 10 mL DI 1416.4 19 

RbBiNb2O7/ 

poly(tetrafluoroet

hylen) 

240 W, 68 kHz 20 mg sample + 30 mL DI 260.79 20 

N doped MoC 100 W, 40 kHz 10 mg sample + 20 mL DI 1690 21 

C3N4@Ag 180 W, 40 kHz 2 mg sample + 100 mL DI 7900 22 

Bi4Ti3O12@Au 100 W, 40 kHz 20 mg sample + 10 mL DI 194.67 23 

g-C3N4 240 W, 40 kHz 2 mg sample + 100 mL DI 8970 24 

La2NiO4 70 W, 40 kHz 10 mg sample + 80 mL DI 1097 25 

BaTiO3-x 100 W, 40 kHz 100 mg sample +100 mL DI 132.4 26 

Bi2MoO6-BaTiO3 300 W 50 mg sample +200 mL DI 152.57 27 
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Table S4 Elemental analysis of Ni-NC/BT before and after reaction. 

Sample Ni/(Ni+Ba+Ti)* 

(mol%) 

Ni-NC/BT (before reaction) 0.56 

Ni-NC/BT (before reaction) 0.49 

*Determined from XRF analysis 
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Table S5 Summarizes the values of Eg, VBmax, EVB, and ECB of BT, NC/BT, and Ni-NC/BT. 

Samples 
Eg 

(eV) 

VBmax 

(Ef, V vs. NHE) 

EVB 

(V vs. NHE) 

ECB 

(V vs. NHE) 

BT 3.54 2.66 2.72 -0.88 

NC/BT 3.47 2.64 2.70 -0.83 

Ni-NC/BT 3.45 2.59 2.65 -0.86 

*ENHE = Φ + Ef - 4.44 (where ENHE is the standard electrode potential and Φ is the work 

function of XPS, which is 4.5 eV in this work)28 
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