Supporting Information

Deciphering the Dynamic Behavior of Geminal-Cu Sites for High-Efficient Nitrate Reduction to Ammonia

Wanxiang Yang,^a Xue Yin,^a Yaofeng Yuan,^a and Wei Lin^{*ab}

- ^a State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China
- ^b Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian, 361005, People's Republic of China

E-mail: wlin@fzu.edu.cn (W. Lin)

Computed Gibbs free energy of NO₃-

The Gibbs free energy change for the adsorption of aqueous nitrate onto the electrode surface (NO_3 -(I) to forming * NO_3) was calculated using a thermodynamic cycle^{1,2} that employs $HNO_3(g)$ as a reference, according to the following three steps:

$$HNO_3(g) + * \rightarrow HNO_3(I) + *$$
 (S1)

$$HNO_3(I) + * \rightarrow H^+ + NO_3^-(I) + *$$
 (S2)

$$NO_3^- + * \rightarrow *NO_3 + e^-$$
 (S3)

therefore, the adsorption of nitrate as described below,

$$HNO_3(g) + * \rightarrow *NO_3 + 1/2H_2(g)$$
 (S4)

the adsorption Gibbs free energy of NO₃- referenced to HNO₃(g), estimated as:

$$\Delta G_{ads}(*NO_3) = G_{*NO3} - (E_{Cug/PCN} + G_{gas}(HNO_3) - 1/2G_{H2})$$
 (S5)

where G_{*NO3} , $G_{gas}(HNO_3)$, and G_{H2} are all calculated using the relation $G = E + (\Delta H - T \Delta S)$, with E, ΔH , and ΔS is electronic energies obtained from DFT calculations, enthalpic and entropic contributions, respectively. All Gibbs free energy calculations were performed at 298.15 K and 1 atm. The ΔG for $HNO_3(g)$ relative to solution is approximately 0.392 eV.³

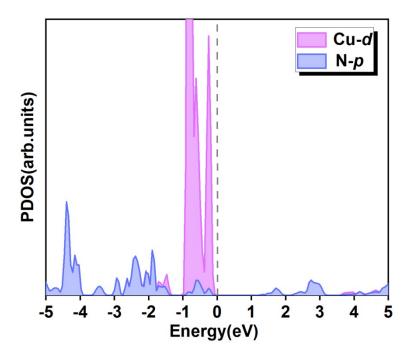


Fig. S1 The PDOS of Cu_g/PCN. The Fermi level (0 eV) is indicated by the gray dashed line.

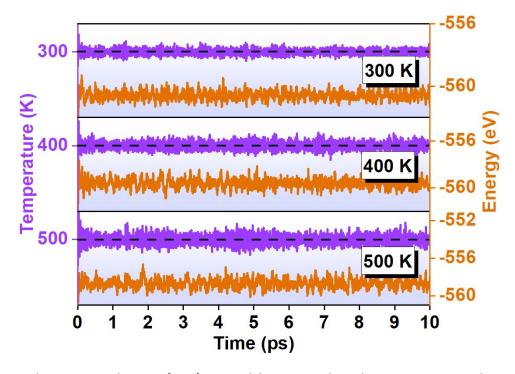


Fig. S2. The AIMD simulations of Cu_g/PCN models were conducted at 300 K, 400 K, and 500 K for 10 ps using a 1fs time step.

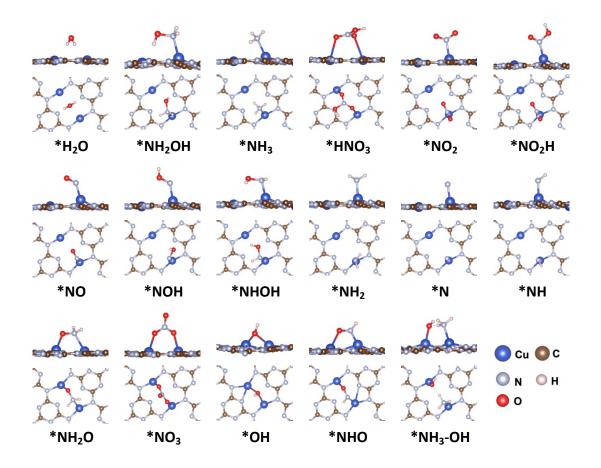
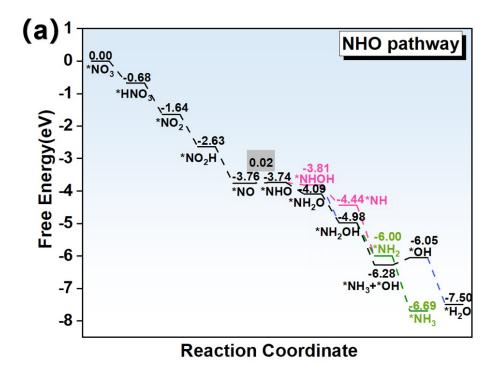



Fig. S3 Optimized structures of all intermediates in the NO_3 reduction mechanism. The blue, gray, red, brown and light pink balls represent Cu, N, O, C and H atoms, respectively.

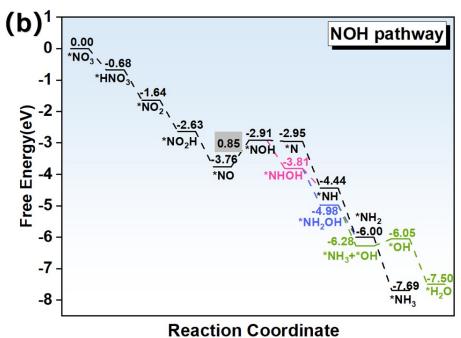


Fig. S4 Free energy diagrams of possible reaction pathways for NO_3RR on Cu_g/PCN (T = 298.15 K, pH = 0). (a) The NHO pathway; (b) the NOH pathway.

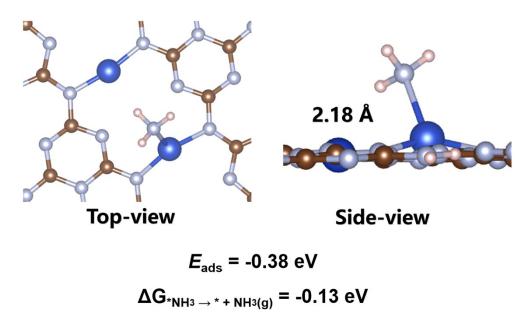


Fig. S5 Optimized structure ($d_{\text{Cu-N}} = 2.18 \text{ Å}$) and adsorption energy of *NH₃ on Cu_g/PCN (compared to $E_{\text{ads}} = -0.32 \text{ eV}$ in reference⁴).

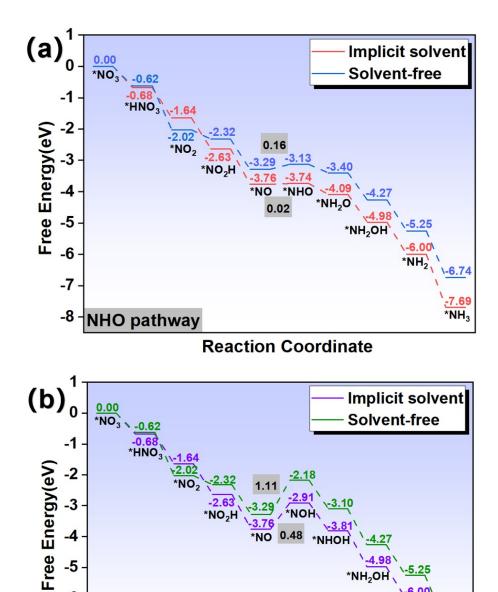


Fig. S6 Comparison of free energy diagrams for NO₃RR under solvent-free and implicit solvent environment (T = 298.15 K, pH = 0). (a) The NHO pathways; (b) the NOH pathways.

Reaction Coordinate

*NH₂OH

-5

-6

-7

NOH pathway

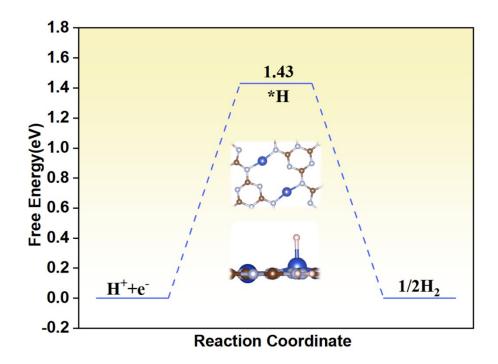


Fig. S7 Free energy profile of the HER catalyzed by Cu_g/PCN (T = 298.15 K, pH = 0).

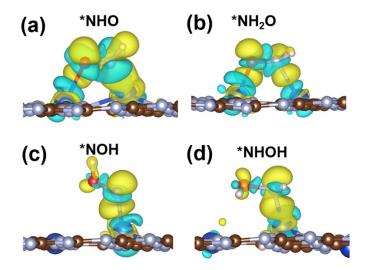


Fig. S8 Charge density difference analysis of key intermediates adsorbed on geminal-Cu sites. (a)*NHO; (b)*NH $_2$ O; (c)*NOH; (d)*NHOH. The isovalue was set to 0.002 eV·bohr $^{-3}$.

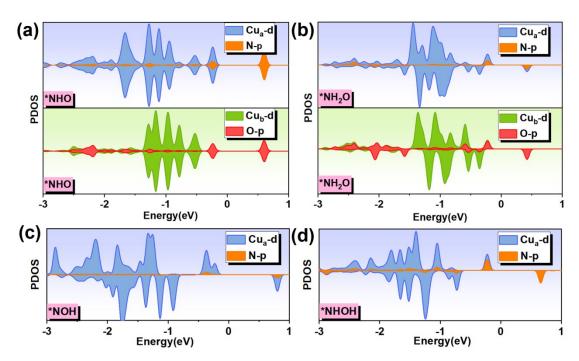


Fig. S9 PDOS analysis of key intermediates adsorbed on geminal-Cu sites. (a)*NHO; (b)*NH $_2$ O; (c)*NOH; (d)*NHOH.

Table S1 Calculated Gibbs free energy, $\Delta E_{ZPE_{r}} \Delta S$ (in eV) of *NH₃ desorbed on Cu_g/PCN (pH=0, T=298.15K).

Cu _g /PCN	ΔE	ΔE_{ZPE}	TΔS	ΔG
*NH ₃ \rightarrow * + NH ₃ (g)	0.38	-0.09	0.42	-0.13

REFERENCES

- 1 W. M. Haynes, D. R. Lide and T. J. Bruno, Eds., *CRC Handbook of Chemistry and Physics*, CRC Press, 97th edn., 2016.
- 2 F. Calle-Vallejo, M. Huang, J. B. Henry, M. T. M. Koper and A. S. Bandarenka, *Phys. Chem. Chem. Phys.*, 2013, **15**, 3196.
- 3 J.-X. Liu, D. Richards, N. Singh and B. R. Goldsmith, ACS Catal., 2019, 9, 7052-7064.
- 4 J. D. Gouveia and J. R. B. Gomes, Surfaces and Interfaces, 2024, 46, 104114.