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S1 Experimental

S1.1 Materials synthesis

Zinc acetate (Zn(AC)2), aniline, ammonium persulfate (APS), and carboxymethyl cellulose (CMC) 

were purchased from Aladdin Biochemical Technology Co., Ltd. (China).

0.3 g of CMC was dissolved in a mixed solution of 90 mL of deionized water and 30 mL of 1 M 

HCl until it was completely dissolved at room temperature. The mixed CMC solution was transferred 

to an ice-water bath (below 5 ℃), and then 1.2 g of aniline monomer and 0.1 g of Zn(AC)2 were added 

to the solution and stirred for 30 min. Subsequently, 3.75 g of APS was added to the above mixture 

and polymerized in an ice-water bath for 6 h. The precipitate was collected by centrifugation and 

washed with deionized water and ethanol several times to remove APS and oligoaniline. Finally, it 

was dried at 60 ℃ for 12 h to obtain polyaniline (Zn-PANI) coordinated with zinc acetate. At the same 

time, polyaniline (PANI) was prepared by the same method without Zn(AC)2.

PANI and Zn-PANI powders were heated to 450 ℃ at a heating rate of 5 ℃ min-1 in a tube furnace 

under nitrogen atmosphere for 2 h. Then the temperature was raised to 1300 ℃ at a heating rate of 3 

℃ min-1 and maintained for 2 h to obtain nitrogen-containing hard carbon materials, which were 

recorded as HC and Zn-HC, respectively. 

S1.2 Materials characterization

The morphology of the products was examined by field emission scanning electron microscopy (FE-

SEM, Ultra Plus, Carl Zeiss, Germany) at an accelerating voltage of 5.0 kV. The microstructure of the 

samples was characterized by transmission electron microscopy (TEM, Carl Zeiss, Germany). The 

Brunner-Emmet-Taylor (BET) surface area (SBET) of the samples was analyzed by adsorption and 

desorption in N2 (77 K) atmospheres on Micromeritics ASAP 2460 nitrogen adsorber in the United 

States. Prior to nitrogen adsorption measurements, all samples were degassed at 300 °C. X-ray 

diffraction (XRD) of the samples was performed on an advanced diffractometer (D/Max-2400, 

Rigaku) using Cu Kα radiation (k = 1.5418 Å), 40 kV, 100 mA. The 2θ range used in the measurements 
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was to 80°. X-ray photoelectron spectroscopy (XPS) measurements were performed on a K-Alpha 

system (USA) using a monochromatic Al Kα radiation source. Raman spectroscopy was conducted by 

employing a Horiba Scientific LabRAM HR-Evolution. Fourier transform infrared spectra were 

collected on a Fourier transform infrared spectrometer (FTIR, Bruker tensor 27, Germany). 

Thermogravimetric analysis (TG) is performed on a Netzsch instrument. In N2 atmosphere, the 

pyrolysis behavior of the materials was analyzed in the range of 50-800 ℃ at the temperature of 20 ℃ 

min-1.

S1.3 Electrochemical characterization

For the fabrication of Zn-HC anode, 80 wt% of Zn-HC active material, 10 wt% of Super P and 10 

wt% of polyvinylidene fluoride (PVDF) were mixed in N-methyl-2-pyrrolidone (NMP), and then the 

mixed slurry was uniformly coated on a copper foil, which was dried in a vacuum drying oven at 80 

℃ overnight. Subsequently, the coated copper foil was cut into circular electrode sheets of 12 mm in 

diameter under the pressure of 10 M Pa. The mass of the active material of the electrode sheet was 

0.8-1.0 mg.

The electrode sheets were assembled to half-cell in a CR2032 coin cell in a glove box filled with Ar 

atmosphere with a content of H2O and O2 lower than 0.1 ppm using a sodium foil with a diameter of 

15.6 mm as the reference electrode and 1 M NaPF6 in DME (100 Vol%) as electrolyte.

To make the full cell, the Zn-HC anode was first charged and discharged several times at a current 

density of 0.02 A g-1. The pre-sodiumized HC anode was then stripped in a glove box. Then, the HC 

anode and NVP@C cathode were assembled in a CR2032 coin cell using glass fiber (Whatman, GF/D) 

and 1 M NaPF6 in DME (100 Vol%) as separator and electrolyte, respectively.

S1.4 Electrochemical measurements

Cyclic voltammetry (CV) test, galvanostatic charge/discharge measurements and electrical 

impedance spectroscopy (EIS) test were recorded by a CHI760E (Shanghai, China). Life-span tests 

for half-cell and hybrid cells used a battery test system (Land CT200lA model, Wuhan Land 
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Electronics, Ltd.).

GITT was considered to an effective method for evaluating the apparent diffusion coefficient of 

ions at different equilibrium potentials. The Na+ diffusion coefficient (DK) can be calculated according 

to Fick's second law with the equation:

DK
+ = 4(mbVm/MbS)2(ΔES/ΔEτ)2/πτ

where τ is the relaxation time of the electrode, mb, Mb, Vm and S denote the mass of electrode active 

material, molar volume, molar mass, and electrode area of the electrode active substance, respectively. 

ΔES and ΔEτ represent voltage changes caused by the galvanostatic current discharge and pulse, 

respectively.
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Fig. S1. SEM of (a-b) Zn-PANI, (c-d) PANI, (e-f) Energy-dispersive X-ray spectroscopy mapping 

images for Zn-PANI and PANI.
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Fig. S2. The high-resolution XPS spectra of (a) C 1s, (b) O 1s for Zn-PANI. (c) The full XPS spectra 

of PANI. The high-resolution XPS spectra of (d) C 1s, (e) O 1s, (f) N 1s for PANI.
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Fig. S3. Atomic ratios of elements C, N, O, and Zn in Zn-PANI and PANI from XPS.
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Fig. S4. SEM images of (a) HC, (b) Zn-HC
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Fig. S5 HRTEM images of HC.
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Fig. S6. The high-resolution XPS spectra for Zn-HC and HC. (a) C 1s, (b) O 1s.
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Fig. S7. Atomic ratios of elements C, N and O in Zn-HC and HC from XPS.
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Fig. S8. CV curves of (a) HC and (b) Zn-HC.
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Fig. S9. GCD curves of (a) HC and (b) Zn-HC for first four cycles at 0.05 A g-1, GCD curves of (c) 

HC and (d) Zn-HC at different current densities.
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Fig. S10. Electrochemical properties comparison of the Zn-HC and previously reported carbon.[1-7]
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Fig. S11. Ex-situ SEM images, (a-b) original electrode, after 500 cycles (c-d) Zn-HC and (e-f) HC.
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Fig. S12. Schematic diagram of basic parameters of GITT analysis within one cycle.
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Fig. S13 b value of peak current (a) Zn-HC and (b) HC, (c) The contribution ratios of capacitance 

and diffusion control of HC and Zn-HC at 0.1–1 mV s−1.
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Fig. S14. EIS spectra of Zn-HC and HC.
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Fig. S15. CV curves of Zn-HC at different scan rates.
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Fig. S16. Ex-situ high-resolution Na 1s spectrum.
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Fig. S17. (a) SEM image, (b) EDS images, (c) GCD curves, and (d) rate performance of NVP@C.
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