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1 Electrochemical measurement: (SP300 workstation)

Electrochemical measurements were conducted in a three-electrode configuration with 3M
KOH as the electrolyte. A Hg/HgO (3M KOH) electrode served as the reference, while a Pt
wire acted as the counter electrode. The working electrode was prepared via the drop-casting
method: 8 mg of the as-prepared GC@Co0.9Nio.1P2O7 sample was mixed with 1 mg of
PVDF (as a polymeric binder) and 1 mg of carbon black. The mixture was thoroughly ground
using a mortar and pestle with 200 pL of ethanol and dried at room temperature. This procedure
was repeated three times to ensure a homogeneous blend.

Subsequently, 2 mg of the resulting mixture was dispersed in 35 pL. of DMF in an Eppendorf
vial and subjected to ultrasonication for 15 minutes. The dispersed solution was then used as
an ink, and was drop-casted onto a graphite sheet with an active area of 1 x 1 cm?, yielding
a total catalyst loading of 1.5 mg.

For electrochemical measurements, cyclic voltammetry (CV) was performed within a potential
window of 0 to 0.5 V vs. Hg/HgO, running at various scan rates. Galvanostatic charge-
discharge (GCD) measurements were carried out at current densities ranging from 1.5 to 10 A
g'. Additionally, electrochemical impedance spectroscopy (EIS) was performed using an AC
voltage with a frequency range of 200 kHz to 0.01 Hz at open circuit potential (OCP, E = 0.0
V).

The specific Capacitance (Cyp) (Fg-1) was measured from both CV and GCD techniques.

From CV curve by using the following mathematical formula (Equation 1)

[1(V)dV

— (%,) e (D)

Csp =

Where, | I (V) dV denotes integrated CV area, (dV/dt) as CV scan rate (mVs™), I is associated
to the discharge current (A), m is the total mass of as prepared ink loaded in the working
electrode (mg), & AV, designates operational voltage window (V).

Further, the Csp calculated by GCD techniques with the mathematical formula Shown below
(Equations 2)

1At

I denote the current (A) used to perform the GCD test.
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2. Hybrid Device Construction:

A hybrid device was constructed using two electrodes set up. Herein, rGO (AC) and
electrochemically activated NigoCoso 600 material are considered as negative and positive
electrodes respectively. The final mass loading of the electrodes was optimized by the charge
mass balance equation following (Equation 5)

m+/m-=C+V+/C-V- 3)

Where, m+, m. are the mass loading, C+, C. are specific capacitance (F g!) & Vs, V. are the
individual operational voltage window of the positive and negative electrodes, respectively.

The energy density (E) & Power density (P) of the hybrid device were measured by following
the mathematical formula (Eq. 4 & 5 respectively)

CspAV? 1000
E="———

gy e e (4)

E
P = 23600 e (5)

Where Csp denotes specific capacitance (Fg!), AV is the operational voltage window, and At
is the discharge time of the pseudocapacitor. E, P indicate energy density (Whkg!) and power
density (Wkg™), respectively.
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Figure S1. PXRD of other pyrophosphate variants

Figure S2. FE-SEM images of (a) GC@Co00.8Nio2P207, (b) GC@Co00.7Ni0.3P207, (c)
GC@Co0.6Nig4P207, (d) GC@Co0.5Nig.sP207

S4



NiO. 1P20-7

(113?0,

Figure S3 SAED pattern of (a) GC@Co00.9Nio.1P207, (b) GC@Co2P207
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Figure S4. Adsorption/desorption isotherm for (a) GC@Co00.9Nio.1P207, (b) GC@Co02P207
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Figure S5. (a) Full survey spectrum of GC@Co00.9N10.1P207 and (b) deconvolution of Cls
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Figure S6. Cyclic voltammograms of (a) GC@Co2P207, (b) GC@Co0.8Nio2P207, (c)
GC@Co0.7N103P207, (d) GC@C00.6Nip.4P207, () GC@Co0.5Nig.5P207
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Figure S7 GCD profiles of remaining variants
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Figure S8 Survey of GC@Co0.9Nio.1P207 at different depths.
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Figure S9 PXRD of before and post stability for GC@Co0.9Nio.1P207

S8



—— OCP after bias
W.—\.WMMM»——AN—W

—— 400 mV

—— 300 mV
e e e A e e ]

——200 mV
A S S SR g RN e

M

350 400 450 500 550 600 650
Raman Shift (cm™)
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Figure S11 PDOS analysis of O (a) and P (b) in both pristine and 1Ni Co2P207
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Figure S12 Different viewsof bulk Co2P207 where green color refers to Co orange refers to
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Figure S13 022 surface of different specie where a is for Pristine (b) 2Ni, (c¢) 4Ni and (d) refers to
INi here green color refers to Co, orange refers to Phosphorous, purple shows Oxygen and cyan
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Figure S15. Charge density difference (CDD) plot produced by subtracting
pristine from 1 Ni doped Co2P207 where blue is negligible electron
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Table S1 Bader analysis of the material before and after incorporation of 1Ni

Sample Average e | Averagee | Averagee Observation
on Co on P on O
Pristine Co2P>07 7.59 0.685 7.634 Baseline charge distribution without dopant
influence.
INi Co2P207 7.58 0.688 7.658 Slight decrease in Co charge implies higher
oxidation; electron accumulation on P and O
centres indicates Co—O bond polarization.

Table S2: Summary of XPS fitting constraints used for GC@Co0.9Nio.1P207

Parameter Co2p Ni 2p P2p Ols
Software CasaXPS CasaXPS CasaXPS CasaXPS
Background Shirley Shirley Shirley Shirley
Peak shape Gaussian—Lorentzian | Gaussian—Lorentzian | Gaussian—Lorentzian | Gaussian—Lorentzian
(GL) (GL) (GL) (GL)
Spin orbit splitting ~15.0-159 ¢V ~17.2-17.8 eV ~0.84-0.88eV | = cemmmemmeemeee-
(2p3n—2p12) (2p3n2—2p112) (2p3n—2p12)
Area ratio Fixed at 2:1 Fixed at 2:1 Fixedat2:1 |  ———memmemmee
2p3/2 :2pl/2
FWHM constraints Same FWHM for Same FWHM for Same FWHM Independent
each doublet each doublet doublet components
Satellite peaks Included (~5-6 eV Included (~5-6eV | = —mmeemmeem | e
above main peak) above main peak)
Same constraints yes yes yes yes

used for pristine and
cycle
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Table S3: Depth-resolved XPS atomic ratios for GC@Co0.9Nio.1P207

Sample condition Sputtering depth P/Co atomic ratio
Before cycling Surface ~1:1
After cycling Surface ~0.07
After cycling 10nm ~0.5
After cycling 100nm ~1:1
After cycling 200nm ~1:1
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Table S4: Comparison table for phosphate-based material.

. Energy | Power Capacit
Specific Potential Spec.lﬁc density | density pztm anee
Name ] . Capacitance retention & | Ref.
Capacitance | window of ASC (In (In
Whkg )| Wke) Cycle No.s
557 Fg'! 0042 32.6 mFcm™ 97.3%
Na Doped Ni,P,0O; V. (at 0.5 mA 234 1292.2 | retention after | 1
(at1.2Agh cm?) 1000 cycles
80% retention
Amorphous 1259 F/g
-0. 119 F/ fter 2000
Coo:Nios at15Ag | ° 8 3 1 A/i 04 800 : Ceyrcles 2
lyphosph 3M KOH
polyphosphate ( ) (Device)
83% retention
. 1974 F/g
NizP,Os -
. 131302 A at05A/g | 0-04V %4 5F1/5 334 399 after ? 0001 5
032U3.8H2 (6M KOH) . g Cyc.es
evice
(Device)
70% retenti
CouNitPs0/Ndoped | 1473 Fig | e 5000
graphene (NG) at 1 A/g V. - 34.9 800 cycles 4
composites
p (3M KOH) (device)
2052 Cg—l 95% retention
sodium doped Ni,P,O7- at 2 Alg 0-045 i 541 1700 after 2000 5
Co2P,04 (3 M KOH) A% cycles
(device)
94% (up to
) 566 Fg'! 0- _ 5000 cycles)
NigoC 42F g 18.79 |1 2
10Co40 600 (@t 1AgY) | 0.65V g 396521 ¢ 84% (upto | ©
10000 cycles)
70% (4500
. 250 Fg'! -0.1- |
- 2
NixP,O7 (CTAB) (at 2 Ag) 0.55V 70F g 3 775 cycl_es) 7
(device)
C0,P,07 with redox 580Fg! -0.2— ) i ] 96% (5000 8
additive KsFe(CN)e (at 1Ag™) 0.48V cycles)
Nickel doped 490.196 Fe 80% retenti
ickel dope o retention .
t1.5
carbon/cabalt 4 1\?/ 8G L o—osv| 3% DB 2623 | 185922 | after 10,000 | 1M
pyrophosphate hybrid KOH) £ cycles (device) W
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