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Fig. S1. SEM images of (a) bare NF, and (b) F-LDH/NF

Table S1. Binding energy data, interpretations and atomic concentrations for the Fe 2p, Ni 
2p, F 1s, O 1s spectra of all samples. 

F-LDH/NF R-F-LDH/NF
XPS 
spectra

B.E. (eV) Chemical state Area (%) B.E. 
(eV)

Chemical state Area %

Fe 2P 706.11
709.21
711.43
713.55
715.91
719.02
724.64

Ni Auger
Fe(II)
Fe(III)
Ni Auger
Satellite
Satellite
Fe(II)

13307.55
15655.88
7960.389
9000.096
13009.16
14142.71
14722.25

706.04
709.87
711.62
713.57
715.96
719.29
724.95

Ni Auger
Fe(II)
Fe(III)
Ni Auger
Satellite
Satellite 
Fe(II)

8887.344
10745.28
5860.869
6112.845
7256.754
5398.339
12280.11

Ni 2P 854.91
856.29
857.72
860.68
862.92
864.56
873.87
875.6
880.44

Ni-O
Ni(II)
Ni(III)
Satellite
Satellite
Satellite
Ni(II)
Ni(III)
Satellite

4416.564
54955.66
42641.34
19723.66
24797.15
22693.89
27600.42
19049.5
46571.18

854.89
855.99
857.37
860.56
862.42
864.4
872.77
874.54
879.34

Ni-O
Ni(II)
Ni(III)
Satellite
Satellite
Satellite
Ni(II)
Ni(III)
Satellite

22157.69
13680.87
12609.7
13715.65
8858.482
4894.701
11758.71
6819.38
20753.71

F 1s 683.74
684.48

Adsorbed F
Doped F

17134.49
7802.899

683.84
684.87

Adsorbed F
Doped F

6606.856
3373.716

O 1s 531.08
531.3
532.4
533.11

Ni-O
M-OH
intercalated H2O
Adsorbed H2O

5024.403
19504.36
30985.42
18367.85

530.16
530.7
531.54
532.2

M-O
Ni-O
M-OH
intercalated 
H2O

29531.69
26610.78
11464.54
10436.78
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Table S2. Comparison between activity and kinetic parameters of catalyst prepared at this work 
and previously reported catalysts.

No. Compound Overpotential (mV) Electrolyte Ref

1 Thin film Ni-Fe η10=280 1M KOH [1]

2 Fe-Nioxy(hydroxide) η10=272 1M KOH [2]

3 Ni(OH)2/NiOOH η10=280 1M KOH [3]

4 Ni1-xFexOOH η10=350 0.1M KOH [4]

5 Fe0.1Ni0.9O η10=297 1M KOH [5]

6 Co/Ni/4/1 η10=336 1M KOH [6]

7 Amorphous Ni-Fe layer 
hydroxide (a-NiFeOxHy) 

η10=270 0.1M KOH [7]

8 HG-NiFe η10=310 1M KOH [8]

9 Ni disk+Fe η600=400 1M KOH [9]

10 Fe@ Ni nanofiber η10=230 1M KOH [10]

11 FeNiMoO4/
NF

η100=257 1M KOH + 0.5M NaCl [11]

12 Co-FeHy@NF η10=224 1M KOH + 0.5M NaCl [12]

13 R-F-LDH/NF η10=182
η100=227

1M KOH + 0.5M NaCl This 
work
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Supplementary Methods: Computational details

The density functional theory (DFT) calculations were conducted using the exchange-

correlation energy function correlated by revised Perdew-Burke-Ernzerhof (RPBE) with the 

generalized gradient approximation (GGA) [13]. Self-consistent electronic density functional 

and total energy was obtained with the pseudopotential using the Vienna ab initio simulation 

package (VASP) code [14]. The plane wave basis set extended to 520 eV energy cutoff. Also, 

GGA+U correction scheme for transition metal cations such as Ni and Fe was adopted to 

correct energy of strongly correlated 3d orbitals [15]. The Hubbard U values on Fe and Ni used 

in this calculation were 5.3 eV and 6.2 eV, respectively. The self-consistent loop was repeated 

until the total energy difference of systems between the adjacent repeating steps were less than 

10-5 eV. To calculate wave functions only Γ-point was considered in irreducible Brillouin zone. 

The calculated slab models with the lowest surface energy of Fe11Ni21(OH)64 (001) and 

Fe11Ni21(OH)49F15 (001) were generated to calculate surface OER reactions. Those slab models 

were optimized by conjugate-gradient method [16] with DFT-D3 Van der Waals energy 

correction [17] until the maximum Hellmann-Feynman force became in ±0.03 eV/Å. To 

incorporate implicit solvent effect in evaluating fluorine desorption energy for F-LDH surface, 

the dielectric constant for water 78.54 was used in VASPsol calculations [18].

The oxygen evolution reaction (OER) mechanism was modeled in alkaline media using a four-

step proton–coupled electron transfer pathway:

(1) *+OH−→∗OH+e−

(2) *OH +*OH− →*O+H2O+e−

(3) *O+OH−→*OOH+e−

(4) *OOH+OH−→*+O2+H2O+e−

Here, denotes an active site on the catalyst surface.

The Gibbs free energy change (ΔG) of each elementary step was calculated as:

G∗X=EDFT+EZPE−TS

Where EDFT is the total energy obtained from DFT calculations, EZPE is the zero-point energy 

correction, and TS represents the entropic contribution at room temperature (298 K). 
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Fig. S2. The optimized adsorption configurations of the OER intermediates on (a) F-LDH (001) and (b) R-F-
LDH surfaces. (The Fe and F substitution ratios in γ-NiOOH are based on XPS experimental results.)

Table S3. Calculated free energy steps for OER 

Step LDH (eV) F-LDH (eV) R-LDH (eV) R-F-LDH (eV)

∆G1 (*OH) 0.311 -1.32 0.721 1.587

∆G1 (*O) 0.634 1.44 0.386 0.731

∆G1 (*OOH) 2.722 2.749 2.710 2.608

∆G1 (O2) 1.246 2.036 1.096 0.287

Table S4. Calculated adsorption energy for Cl-
  

Catalyst ECl
-
+slab 

(eV)
Eslab only 

(eV)
ECl

-
 

(eV)
Adsorption 
Energy (eV)

LDH -830.85 -826.864 -4.847 +0.861
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F-LDH -740.247 -737.352 -4.847 +1.952

R-LDH -662.011 -657.925 -4.847 0.761

R-F-LDH -599.982 -596.056 -4.847 0.921

Table S5. Calculated fluorine vacancy formation energies for F-LDH in vacuum and aqueous 
environment.  

Condition F-LDH with 1F vac.
(eV)

F-LDH
(eV)

1/2 * F2
(eV)

Desorption Energy 
(eV)

Vacuum -731.137 -737.352 -1.660 4.555

H2O implicit -731.272 -736.651 -1.660 3.720
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Fig. S3. (a) LSV curves for HER performance of F-LDH/NF (b) EIS Nyquist plots for F-LDH/NF
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