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Table S1. A comparative list of hydrogen evolution activity for crystalline carbon nitride obtained under different experimental conditions.

Precursor Tem./ Sacrificial Agent Reaction Hz evolution rate
Atmosphere Time/h Salt Light Cocatalysts Ref.
oC Tem./°C  (mmol-g!-h!)
0.5 wt% Co, 1
Dicyandiamide Vacuum 550 12 NaCl, KCI, LiCl 300 W Xe lamp A>300 nmwt% Pt, 0.75 12 6.1 1
wt% Cr
1 wt% Pt and
Dicyandiamide Vacuum 600 24 KCI, LiCl 300 W Xe lamp 10 vol% MeOH 0.649 2
9 wt% Co
BCN Sealed 550 8 KCl, LiCl 300 W Xe lamp A>300 nm 3 wt% Pt 10 vol% TEOA 15 5.062 3
KCl, LiCl,
P-CN Ar 550 4 300 W Xe lamp A>420 nm 1 wt% Pt 10 vol% TEOA 3.538 4
COClz ) 6H20
400 °C 1 h then
Melon Ar KSCN 300 W Xelamp AM 1.5G 8 wt% Pt 10 vol% MeOH 25 2.4 5
500°C0.5h
CN Ar 550 2 KCl, ZnCl 300 W Xe lamp A>420 nm 3 wt% Pt 10 vol% MeOH 15 1.5 6
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Figure S1. FWHM of the (002) peak as a function of calcination time.



Table S2. EPR-quantified nitrogen vacancy concentrations.

Concentrations g-C3Ny CCN-Nss CCN-Ass

Spins/mm? (x
2.946 5.566 6.933
10'6)




Table S3. Elemental composition of g-C3N,, CCN-Nsso, and CCN-Asso determined by

elemental analysis.

Elemental analysis g-C3Ny CCN-Nss CCN-Ass
C (%) 34.79 25.75 26.63
N (%) 61.59 42 .81 44.67
H (%) 1.88 1.97 2.08
O (%) 1.10 15.41 14.89

C/N (mol ratio) 0.57 0.60 0.60
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Figure S2. Nitrogen adsorption-desorption isotherms of the synthesized CCN catalysts.
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Figure S3. SEM images of g-C;Ny,



Figure S4. TEM images of CCN-Vssg



Figure S5. SEM images of CCN-Nss



Figure S6. SEM images of CCN-Ass
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Figure S7. UV-vis diffuse reflectance spectra (DRS) of samples.
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Figure S8. Mott-Schottky plots of g-C;Nj.




Table S4. Electron transfer resistance values derived from the fitted EIS spectra in

Figure 6f.
R, /Q R, /Q R,/ Q R, /Q
(g-C3Ny) (CCN-Ass0) (CCN-Nss) (CCN-Vss)
Light off 23.37 28.54 25.55 26.50
Light on 15.83 12.82 10.88 19.73

R, represents the electron transfer impedance.
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Figure S9. Photocatalytic performance of CCN-Ny and g-C;N,.
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Figure S10. Photocatalytic performance of CCN-A, and g-C;Nj.
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Figure S11. Photocatalytic performance of CCN-V, and g-C;Nj.
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Figure S12. Hydrogen evolution activity of CCN-Nsso over different organic

substrates.
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Figure S13. Hydrogen evolution activity of CCN-Assy over different organic

substrates.
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Figure S14. Hydrogen evolution activity of CCN-Nsso, CCN-As5o and g-C;N4 without

the addition of organic substrates.
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Figure S15. XPS survey spectra of fresh and spent catalysts.
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Figure S16. The high-resolution O 1s XPS spectra of fresh and spent catalysts.



Table S5. Comparative K and O contents of CCN-Nsso and CCN-Ass, pre- and post-

photocatalysis.
K Content Relative Change O Content Relative
Sample
(%) (o) (%) Change (%)

Fresh 6.53 2.92

CCN-Nss 25 85
Spent 4.88 5.40
Fresh 5.50 3.48

CCN-Ass 15 35
Spent 4.67 4.70
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