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Table S1. A comparative list of hydrogen evolution activity for crystalline carbon nitride obtained under different experimental conditions.

Precursor
Atmosphere

Tem./ 

oC
Time/h Salt Light Cocatalysts

Sacrificial Agent Reaction 

Tem./℃

H2 evolution rate

（mmol･g-1･h-1）
Ref.

Dicyandiamide Vacuum 550 12 NaCl, KCl, LiCl 300 W Xe lamp λ>300 nm 

0.5 wt% Co, 1 

wt% Pt, 0.75 

wt% Cr

12 6.1 1

Dicyandiamide Vacuum 600 24 KCl, LiCl 300 W Xe lamp
1 wt% Pt and 

9 wt% Co
10 vol% MeOH 0.649 2

BCN Sealed 550 8 KCl, LiCl 300 W Xe lamp λ>300 nm 3 wt% Pt 10 vol% TEOA 15 5.062 3

P-CN Ar 550 4
KCl, LiCl, 

CoCl2･6H2O
300 W Xe lamp λ>420 nm 1 wt% Pt 10 vol% TEOA 3.538 4

Melon Ar
400 ℃ 1 h then 

500 °C 0.5 h
KSCN 300 W Xe lamp AM 1.5 G 8 wt% Pt 10 vol% MeOH 25 2.4 5

CN Ar 550 2 KCl, ZnCl 300 W Xe lamp λ>420 nm 3 wt% Pt 10 vol% MeOH 15 1.5 6



MCA-x Ar 550 4 KCl, LiCl 300 W Xe lamp AM 1.5G 2 wt% Pt
1.25 vol% benzyl 

alcohol
35 7.470 7

PCN N2 550 3 KCl 300 W Xe lamp λ>420 nm 1 wt% Pt 10 vol% TEOA 5 1.188 8

BCN N2 550 4 KCl, LiCl 300 W Xe lamp λ>420 nm 1 wt% Pt 20 vol% lactic acid 32.1 9

BCN N2 550 4 KCl, LiCl 3W LED light λ>420 nm 1 wt% Pt 10 vol% TEOA 2.457 10

g-C3N4 N2 550 4 KCl, LiCl 300 W Xe lamp λ>420 nm 3 wt% Pt 10 vol% MeOH 1.060 11

HCN N2 520 4 NaSCN, NH4Cl 300 W Xe lamp λ>420 nm 3 wt% Pt 10 vol% TEOA 3.550 12

Dicyandiamide 550 4 NaHCO3 300 W Xe lamp λ>420 nm 3 wt% Pt 10 vol% TEOA 15 1.26 13

Melon N2 550 4 KCl, LiCl 300 W Xe lamp λ>420 nm 3 wt% Pt 10 vol% TEOA 12 6.970 14

GCN N2 550 4 KCl, LiCl 300 W Xe lamp λ>400 nm 3 wt% Pt 10 vol% MeOH 8.67 15

Co-CN N2 550 8 KCl, LiCl 300 W Xe lamp λ>400 nm
1 wt% Co, 3 

wt% Pt
0.44 16

Bulk CNT N2 550 4 KCl, LiCl 300 W Xe lamp 3 wt% Pt 10 vol% MeOH 0.660 17

Melem-based

oligomer/PCN 

polymer

N2 550 4 KCl, LiCl 300 W Xe lamp / 18

Melamine Air 550 3 KCl 300 W Xe lamp λ>420 nm 1 wt% Pt 10 vol% TEOA 1.356 19



Melamine Air 550 3 KBr 500 W Xe lamp λ>280 nm 1 wt% Pd 16.7 vol% MeOH 20 1.6 20

CN Air 600 0.5-4 KCl 300 W Xe lamp λ>420 nm 3 wt% Pt 20 vol% TEOA 15 5.238 21

Urea Air 600 3 KCl, CaCl2 300 W Xe lamp λ>420 nm 3 wt% Pt 10 vol% TEOA 5 5.19 22

Melamine Air 600 3 KCl, MnCl2 300 W Xe lamp λ>420 nm 3 wt% Pt
10 vol% benzyl 

alcohol
10 0.792 23

Dicyandiamide Air 550 4 KCl 300 W Xe lamp λ>420 nm 3 wt% Pt 10 vol% TEOA 0.569 24

Urea Air 600 3 KCl, KOH 300 W Xe lamp λ>420 nm 3 wt% Pt 10 vol% TEOA 4.008 25

C-CN Air 550 2 KCl, NaCl, LiCl 300 W Xe lamp λ>420 nm 3 wt% Pt 10 vol% TEOA 5 0.182 26

Mel-T Air 550 4 KCl, LiCl 350 W Xe lamp 3 wt% Pt 10 vol% TEOA 0.890 27

CM-CN Air 550 4 KCl, LiCl 350 W Xe lamp 3 wt% Pt 4 wt% BPA 0.151 28

Urea Air 600 6 KCl 300 W Xe lamp λ>500 nm 3 wt% Pt 20 vol% TEOA 15 0.922 29

Cu-CN Air 550 4 KCl, LiCl CO2 Reduction 30



Figure S1. FWHM of the (002) peak as a function of calcination time.



Table S2. EPR-quantified nitrogen vacancy concentrations.

Concentrations g-C3N4 CCN-N550 CCN-A550

Spins/mm3（

1016）
2.946 5.566 6.933



Table S3. Elemental composition of g-C3N4, CCN-N550, and CCN-A550 determined by 

elemental analysis.

Elemental analysis g-C3N4 CCN-N550 CCN-A550

C (%) 34.79 25.75 26.63

N (%) 61.59 42.81 44.67

H (%) 1.88 1.97 2.08

O (%) 1.10 15.41 14.89

C/N (mol ratio) 0.57 0.60 0.60



Figure S2. Nitrogen adsorption-desorption isotherms of the synthesized CCN catalysts.



Figure S3. SEM images of g-C3N4.



Figure S4. TEM images of CCN-V550



Figure S5. SEM images of CCN-N550



Figure S6. SEM images of CCN-A550



Figure S7. UV-vis diffuse reflectance spectra (DRS) of samples.



Figure S8. Mott-Schottky plots of g-C3N4.



Table S4. Electron transfer resistance values derived from the fitted EIS spectra in 

Figure 6f.

R1 / 

(g-C3N4)

R1 / 

(CCN-A550)

R1 / 

(CCN-N550)

R1 / 

(CCN-V550)

Light off 23.37 28.54 25.55 26.50

Light on 15.83 12.82 10.88 19.73

R1 represents the electron transfer impedance.



Figure S9. Photocatalytic performance of CCN-Nx and g-C3N4.



Figure S10. Photocatalytic performance of CCN-Ax and g-C3N4.



Figure S11. Photocatalytic performance of CCN-Vx and g-C3N4.



Figure S12. Hydrogen evolution activity of CCN-N550 over different organic 

substrates.



Figure S13. Hydrogen evolution activity of CCN-A550 over different organic 

substrates.



Figure S14. Hydrogen evolution activity of CCN-N550, CCN-A550 and g-C3N4 without 

the addition of organic substrates.



Figure S15. XPS survey spectra of fresh and spent catalysts.



Figure S16. The high-resolution O 1s XPS spectra of fresh and spent catalysts.



Table S5. Comparative K and O contents of CCN-N550 and CCN-A550 pre- and post-

photocatalysis.

Sample
K Content 

(%)

Relative Change 

(%)

O Content 

(%)

Relative 

Change (%)

Fresh 6.53 2.92
CCN-N550

Spent 4.88
25

5.40
85

Fresh 5.50 3.48
CCN-A550

Spent 4.67
15

4.70
35
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