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The cross-boundary catalytic effect of anions and cations
enhances the hydrogen storage performance of magnesium-

based hydrogen storage materials
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Figure S1 Hydrogenation of Mg and Mg@Fe**-V,AICF,
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Figure S2 Hydrogenation of Mg+n%Fe3*-V,AICF,
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Figure S3 The average grain size of Fe(NO;);-V,AICF,, Co(NOj3),-V,AICF,, and
Ni(NO;),-V,AICF,
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Figure S4 EDS Mappings of Fe(NO3);-V,AICF,
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Figure S5 EDS Mappings of Co(NO3),-V,AICF,
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Figure S6 EDS Mappings of Ni(NO3),-V,AICF,

Table S1 Values of n, In(K) and equation of Mg@Fe**-V,AICF, under 300r/min with

a pressure of 0.2 MPa.

P vV BPR n In (K) Kinetic equation
0.2MPa  300r/min 120: 1 1.79 -3.00 a =1 —exp (—4.98 x 10-2£189)
02MPa  300r/min 100 1 1.74 3.30 @ =1—exp (—3.69 x 10-2¢175)
0.2MPa  300r/min 80: 1 1.59 -3.50 o =1—exp (—3.02 x 1072£15%)
0.2MPa 3001/min 60: 1 1.46 -3.90 @ =1—exp(—2.02 x 1072148

Table S2 Values of n, In(K) and equation of Mg@Fe3**-V,AICF, under 300r/min with

a pressure of 0.4 MPa.

P A% BPR n In (K) Kinetic equation
0.4MPa 300r/min 120: 1 1.81 -2.60 @ =1—exp(—743 x 107281
0.4MPa  300r/min 100: 1 1.75 281 @ =1—exp (—6.02 x 1072¢175)
0.4MPa 400r/min 80: 1 1.73 -2.92 ¢ =1—exp(—539 x 10727
0.4MPa 400r/min 60: 1 1.71 -3.34 @ =1—exp(—3.54 x 107272)

Table S3 Values of n, In(K) and equation of Mg@Fe**-V,AICF, under 400r/min with



a pressure of 0.4 MPa.

P VvV BPR n In (K) Kinetic equation
0.4MPa 400r/min 120: 1 1.83 -2.12 z=1—exp(—120 x 107 1£183)
0.4MPa 400r/min 100: 1 1.78 -2.19 ¢ =1—exp(—112 x 1071£175)
0.4MPa 400r/min 80: 1 1.74 -2.28 @ =1—exp(—1.02 x 1071174
0.4MPa 400r/min 60: 1 1.72 -2.30 o =1—exp(—1.00 x 1071t72)
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Figure S7 a) Hydrogenation of Mg@Co?*-V,AICF, under various milling conditions, b-d)
Inln(1/(1-a)) curves for hydrogenation of Mg@ Co?*-V,AICF, under various milling conditions as

a function of In(t) with linear fitting

Table S4 Values of n, In(K) and equation of Mg@Co?*-V,AICF, under 300r/min with

a pressure of 0.2 MPa.

P A% BPR n In (K) Kinetic equation
02MPa  300r/min 120: 1 2.23 4.12 @ =1—exp (—1.62 x 10-2¢223)
02MPa  300r/min 100: 1 217 478 @ =1 —exp (—8.40 x 10~3¢217)
0.2MPa 3001/min 80: 1 2.1 -4.90 o =1—exp(—7.45 x 10732
0.2MPa 300r/min 60: 1 1.97 -5.43 o =1—exp (—438 x 1073157

Table S5 Values of n, In(K) and equation of Mg@Co?"-V,AICF, under 300r/min with
a pressure of 0.4 MPa.

P A% BPR n In (K) Kinetic equation




0.4MPa

0.4MPa

0.4MPa

0.4MPa
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300r/min
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400r/min
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1 24 -4.02
1 2.38 -4.54
1 2.30 -4.60
1 2.27 -5.15
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Table S6 Values of n, In(K) and equation of Mg@Co?*-V,AICF, under 400r/min with

a pressure of 0.4 MPa.

P v BPR n In (K) Kinetic equation
0.4MPa 400r/min 120: 1 2.52 -3.89 o =1—exp(—2.04 x 1072£252)
0.4MPa 400r/min 100: 1 2.44 -4.31 o =1—exp(—134 x 107234
0.4MPa 400r/min 80: 1 2.39 -4.50 ¢ =1—exp(—1.11 x 1072£239)
04MPa  400r/min 60: 1 2.30 -4.89 @ =1—exp (—7.52 x 10-3¢2%9)
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Figure S8 a) Hydrogenation of Mg@Ni?*-V,AICF, under various milling conditions,
b-d) Inln(1/(1-a)) curves for hydrogenation of Mg@ Ni**-V,AICF, under various
milling conditions as a function of In(t) with linear fitting

Table S7 Values of n, In(K) and equation of Mg@Ni?**-V,AICF, under 300r/min with

a pressure of 0.2 MPa.
P A% BPR n In (K) Kinetic equation
02MPa  300r/min 120: 1 2.18 3.92 @ =1—exp (—1.98 x 10-2£218)



02MPa  300r/min 100: 1 2.08 -4.56 @ =1—exp (—1.05 x 10-2¢208)
0.2MPa 300r/min 80: 1 1.93 -4.65 o =1—exp(—9.56 x 1073193

0.2MPa 300r/min 60: 1 1.85 -5.31 ¢ =1—exp(—4.94 x 1073:185)

Table S8 Values of n, In(K) and equation of Mg@Ni?*-V,AICF, under 300r/min with

a pressure of 0.4 MPa.

P A% BPR n In (K) Kinetic equation
04MPa  300t/min 120 1 226 -3.97 @ =1 — exp (— 189 x 10-222%)
0.4MPa 300r/min 100: 1 2.11 -4.50 o =1—exp(—111x 107221
0.4MPa 400r/min 80: 1 2.01 -4.57 o =1—exp(—1.03 x 107220
0.4MPa 400r/min 60: 1 1.89 -5.30 o =1 —exp (—4.99 x 1073189

Table S9 Values of n, In(K) and equation of Mg@Ni**-V,AICF, under 400r/min with

a pressure of 0.4 MPa.

P A" BPR n In (K) Kinetic equation
0.4MPa  400r/min 120: 1 2.73 -3.80 @ =1—exp (—2.23 x 10-2¢273)
0.4MPa 400r/min 100: 1 2.45 -4.34 o =1—exp(—130 x 1072£345)
0.4MPa  400r/min 80: 1 2.42 -4.46 @ =1—exp (—1.16 x 10-2¢242)
0.4MPa 400r/min 60: 1 2.37 -4.97 @ =1—exp(—694 x 1073237

Table S10 Activation energy of Mg@Fe*"-V,AICF, under the condition of 0.4MPa
and 400r/min

P A% BPR Ea (KJ/mol)
Average (KJ/mol)
0.4MPa 400 r/min 120:1 16.45
0.4MPa 400 r/min 100:1 19.54
20.26
0.4MPa 400 r/min 80:1 21.84
0.4MPa 400 r/min 60:1 23.22

Table S11 Activation energy of Mg@Fe3*-V,AICF, under the condition of 0.4MPa
and 300r/min

P A\ BPR Ea (KJ/moD)
e o Average (KJ/mol)




0.4MPa 300 r/min 120:1 19.79

0.4MPa 300 r/min 100:1 23.59

24 .47
0.4MPa 300 r/min 80:1 25.79
0.4MPa 300 r/min 60:1 28.74

Table S12 Activation energy of Mg@Co?"-V,AICF, under the condition of 0.4MPa
and 400r/min

P Vv BPR Ea (KJ/molD)
a o Average (KJ/mol)
0.4MPa 400 r/min 120:1 25.07
0.4MPa 400 r/min 100:1 29.53
30.44
0.4MPa 400 r/min 80:1 32.82
0.4MPa 400 r/min 60:1 34.33

Table S13 Activation energy of Mg@Co?*-V,AICF, under the condition of 0.4MPa
and 300r/min

P \% BPR Ea (KJ/mol)
a o Average (KJ/mol)
0.4MPa 300 r/min 120:1 26.61
0.4MPa 300 r/min 100:1 29.8
33.53
0.4MPa 300 r/min 80:1 36.88
0.4MPa 300 r/min 60:1 40.81

Table S14 Activation energy of Mg@Ni**-V,AICF, under the condition of 0.4MPa
and 400r/min

P A% BPR Ea (KJ/mol)
Average (KJ/mol)
0.4MPa 400 r/min 120:1 27.08
0.4MPa 400 r/min 100:1 35.11
35.53
0.4MPa 400 r/min 80:1 38.87
0.4MPa 400 r/min 60:1 41.08

Table S15 Activation energy of Mg@Ni*"-V,AICF, under the condition of 0.4MPa
and 300r/min



P A\ BPR Ea (KJ/mol)
a mo Average (KJ/mol)

0.4MPa 300 r/min 120:1 33.16
0.4MPa 300 r/min 100:1 35.1
38.78
0.4MPa 300 r/min 80:1 41.3
0.4MPa 300 r/min 60:1 45.57
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Figure S9 The optimized structures of H, adsorption on the a) Mg@Fe**-V,AICF,, b)
Mg@Co?*-V,AICF, and ¢) Mg@Ni?*-V,AICF, surfaces.

<100 b [ 1 Mg@Fe**-V,AICF,
075 ) 1T Mg@Co*-V,AICF,
-0.50 [ Mg@Ni**-V,AICF,

Net charges (e)
(=)

1
|

F0.25 |

H c | Mg [ at [ v [ F [relconi

Flemental comnonent

Figure S10 The a) DDC and b) Mulliken’s charge of the H, adsorption on the
Mg@Fe**-V,AICF,, Mg@Co?*-V,AICF, and Mg@Ni**-V,AICF surfaces.

Table S16 The adsorption energy of H, on the Mg(0001)@TM**-V,AICF surface.

Ea/Ha Mg@Fe*-V,AICF, Mg@Co?*-V,AICF, Mg@Ni>*-V,AICF,
Top -0.0085870 -0.0063263 -0.0086272
Bridge -0.0073517 -0.0075125 -0.0079703

Fcc -0.0280089 -0.0246339 -0.0214725
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Figure S11 a-b) Isothermal dehydrogenation curves for MgH,@Ni-V,AICF, under a
variety of conditions, c-d) Curves of [-In(1-a)]'" depicting the dehydrogenation
process of MgH,@Ni-V,AICF; as a function of T, accompanied by their
corresponding linear fittings.
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Figure S12 a-b) Isothermal dehydrogenation curves for MgH,@Co-V,AlICF, under a
variety of conditions, ¢-d) Curves of [-In(1-o)]' depicting the dehydrogenation



process of MgH,@Co-V,AICF, as a function of T, accompanied by their
corresponding linear fittings.
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Figure S13 a-b) Isothermal dehydrogenation curves for MgH,@Fe-V,C under a
variety of conditions, c¢-d) Curves of [-In(1-o)]' depicting the dehydrogenation
process of MgH,@Fe-V,AICF, as a function of T, accompanied by their
corresponding linear fittings.

CHOMg@ C OV@OAIQO F@ Fe @ Co @Ni

2) b) o

Figure S14 The optimized structures of the a) MgH,@Fe-V,AICF,, b) MgH,@Co-
V,AICF; and ¢) MgH,@Ni1-V,AICF, surfaces.
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Figure S15 The a) DDC and b) Mulliken’s charge of the H, desorption on the
MgH,@Fe-V,AICF;, MgH,@Co-V,AICF, and MgH,@Ni-V,AICF, surfaces
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Figure S16 The dehydrogenation kinetics of MgH,@Fe-V,AICF, during 200 cycles
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