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Fig. S1. (a) XRD patterns of BiOCl, and BiOCl-Bi2S3 heterojunction, (b) XRD 

patterns of BiOCl-Bi2S3-40.
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Fig. S2. (a) XRD patterns of BiOCl-Bi2S3-50; (b) Enlarged XRD patterns of BiOCl-

Bi2S3-50.
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Fig. S3. XPS survey spectrum of BiOCl, and BiOCl-Bi2S3 heterojunctions
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Fig. S4. UV-vis absorption spectra of methanol before and after reaction for 3 hours.

Fig. S5. (a) The GC signal for methanol oxidation product; the GC signal for 

oxidation product of (b) EtOH and (c) TEOA.
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Fig. S6. XRD patterns of BiOCl-Bi2S3-40 before and after 5 cycles.

Fig. S7. SEM images of BiOCl-Bi2S3-40 after 5 cycles.
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Table S1. Piezocatalytic H2 production rates comparison of BiOCl-Bi2S3-40 

heterojunction with previous reported piezocatalytic materials.

Piezocatalysts Composition and 

structure

Conditions H2 evolution 

rates 

(μmol/g/h)

Sacrificial 

Agents

BMO-0.1BTO1 Heterojunction 300 W 152.57 MeOH

O-MoS2-1802 Oxygen-incorporated 40 kHz, 150 W 46.1 None

SrSn0.01Ti0.99O3
3 Sn doped 40 kHz, 80 W 101.46 None

BSFMO-24 Sm and Mn codoped 40 kHz, 150 W 550 TEOA

SrTiO3
5 Oxygen Vacancy 40 kHz, 300 W 540 None

MoS2
6 Sulfur Vacancy 40 kHz, 80 W 1423 MeOH

BIOVO/NM7 Heterojunction and 

Oxygen Vacancy

300 W 420.6 None

Sr0.5Ba0.5Nb2O6/

Sr2Nb2O7
8

Heterojunction and 

Oxygen Vacancy

40 kHz, 110 W 109.4 TEOA

Bi1/2Na1/2TiO3
9 Heterojunction and 

Oxygen Vacancy

40 kHz, 110 W 506.7 MeOH

BaTiO3-x
10 Oxygen Vacancy 40 kHz, 110 W 132.4 None

MoS2
11 Vanadium-doped 68 kHz, 192 W 346.2 None

Bi2S3
12

Sulfur vacancy
40 kHz, 200 W 2370 Na2S and 

Na2SO3

MCC13 Vacancy 50 kHz, 300 W 84.47 MeOH

BiOCl-Bi2S3-40

This work
Heterojunction and 

Bismuth Vacancy 

45 kHz, 120W 678.67 None
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45 kHz, 120W 2717.33 MeOH

Fig. S8. EPR spectra of the samples for (a) DMPO-·OH, (b) DMPO-·O2
-.

Fig. S9. UV-vis diffuse reflectance spectra (DRS) of (a) BiOCl, (b) and BiOCl-Bi2S3-

40.



S7

Fig. S10. Energy band diagram of BiOCl and Bi2S3.
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Fig. S11. The open-circuit voltage of BiOCl and BiOCl-Bi2S3-40.



S8

336 338 340 342

In
te

ns
ity

 (a
.u

.)

Magnetic field (mT)

Fig. S12. EPR spectrum of 10% BiOCl- Bi2S3-N.
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