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Fig. S1. XPS spectra of Mg 1s (a), Ca 2p (b), Sr 3d (c) and Ba 3d (d).
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Fig. S2 Magnified XRD patterns of catalysts.
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Fig. S3 TEM (a) and HRTEM (b) images of HM-RuO,.
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Fig. S4 TEM images of Mg-RuO: (a, b), Ca-RuO: (c, d), Sr-RuO: (e, f) and Ba-RuO- (g, h).
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Fig. S5 (a) Normalized Ru K-edge XANES spectra of samples. (b) Normalized XES spectra of Ru Lai2 of

samples.
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Fig. S6 O 1s spectra of Com. RuO; (a), HM-RuO; (b), Mg-RuO: (c¢), Ca-RuO: (d), Sr-RuO> (e) and Ba-
RuO; ().
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Fig. S7 EPR spectra of catalysts with different Ov densities.
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Fig. S8 Overpotential of catalysts at 10 mA cm™.
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Fig. S9 (a) XRD patterns of RuO catalysts with varying Mg*" doping concentrations. (b) XRD patterns of

RuO; catalysts with varying Ca?" doping concentrations. (c) XRD patterns of RuO> catalysts with varying

Sr?* doping concentrations. (d) XRD patterns of RuO:> catalysts with varying Ba®" doping concentrations.
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Fig. S10 (a) LSV curves of RuO> catalysts with varying Mg?" doping concentrations. (b) LSV curves of

RuO; catalysts with varying Ca?* doping concentrations. (c) LSV curves of RuO> catalysts with varying Sr**

doping concentrations. (d) LSV curves of RuO; catalysts with varying Ba** doping concentrations.
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Fig. S11 CV curves from the non-reactive region for (a) HM-RuO>, (b) Com. RuO,, (¢) Mg-RuO, (d) Ca-

RuO,, (e) Sr-RuO; and (f) Ba-RuO..
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Fig. S13 Nyquist plots of catalysts from 1.40 to 1.50 V vs. RHE.
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Fig. S15 Long-term durability tests at current density of 1 A cm™ of HM-RuO; (a) and Com. RuO..
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Fig. S16 The operation efficiency (calculating using higher heating value of H,, HHV=1.43x10° J g!) of
PEMWE utilizing HM-RuO2, Com. RuO2, Mg-RuO;, Ca-RuO., Sr-RuO; and Ba-RuO; as the anodes at 1 A

cm™ (a), 2 A cm? (b) and 3 A cm™ (c). The operation efficiency (calculating using lower heating value of
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Fig. S17 The energy consumption per kilogram of H, for PEMWE utilizing HM-RuO;, Com. RuO», Mg-
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Fig. S20 Chronopotentiometric (CP) durability test at 10 mA cm™.
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Fig. S23 (a) Decay rate of catalysts at 10 mA cm™. (b) Dependence of Ru dissolution in the electrolyte on

the OER reaction time at 10 mA ¢cm™.
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Table S1. Chemical composition of the catalysts determined by ICP-OES.

Catalysts Ru (wt%) Ae (Wt%) Ru/Ae at. ratio
HM-RuO> 76.32% / /
Mg-RuO; 71.45% 1.92% 8.95
Ca-RuO» 71.80% 3.15% 9.04
Sr-RuO; 69.10% 6.61% 9.06
Ba-RuO» 66.33% 10.04% 8.97
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Table S2. Ionic radii in rutile phase.

' ROYAL SOCIETY
OF CHEMISTRY

Ion CN Ri/A
Ru®* 6 0.68
Ru* 6 0.62
Ru>* 6 0.57
Mg?* 6 0.72
Ca’ 6 1.0

Sr?* 6 1.18
Ba*" 6 1.35
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Table S3. The interplanar spacing of the catalyst.

' ROYAL SOCIETY
OF CHEMISTRY

Catalysts (110) (101)
HM-RuO, 0.321 0.247
Mg-RuO» 0.315 0.226
Ca-RuO> 0.317 0.229
Sr-RuO» 0.319 0.231
Ba-RuO; 0.324 0.241
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Table S4. Fitting results of O 1s XPS spectra for catalysts.

OL Oy OoH Osur Ov/OL
Com. RuO; 28.68% 50.82% 20.5% / 1.77
HM-RuO» 22.47% 41.78% 9.96% 25.79% 1.86
Mg-RuO: 27.67% 39.83% 21.05% 11.45% 1.44
Ca-RuO» 25.25% 29.65% 30.27% 14.82% 1.17
Sr-RuO» 25.93% 27.48% 18.08% 28.51% 1.06
Ba-RuO; 37.38% 34.31% 18.33% 9.98% 0.92
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Table S5. PEMWE activity based on Ae**-RuQ,, Com. RuO,, HM-RuO; and those previously reported

catalysts.
. Cell
Loadin Membra Cell voltage Stability
Catalysts temperatur Reference
ne o (V)at 1A (h)
amount e (°C) 5
cm
Mg-RuO, 2mg  Nafion 60 °C 1.68 B0@L A 1his work
cm 212 cm
2 mg Nafion o 110@1 .
Ca-Ru0O; . 212 60 °C 1.65 A cm> This work
2 mg Nafion o 200@1 .
Sr-Ru0O» e’ 212 60 °C 1.59 A om?2 This work
2 mg Nafion o 150@1 .
Ba-RuO> . 212 60 °C 1.62 A cm> This work
Com. 2 mg Nafion o 35wl A .
RuO, J. 212 60 °C 1.74 o2 This work
HM-Ru0, 2Mg  Nafion o0 181 P@LA T work
cm 212 cm
LD- 2 mg Nafion o 300@0.2
B/RuO,  cm? 117 80°C LS saem?  Reb2
3 mg Nafion o 300@1
Ir-RuO» JO 115 80 °C 1.60 A om? Ref. 3
MD- I mg Nafion o 50wl A
RuO-BN  cm? 115 80°C 1.64 cm? Ref. 4
Cro2Ruos 3 mg Nafion o 2001
O om 115 60 °C 1.77 A om? Ref. 5
. I mg Nafion o 100@0.5
RuTiOx . 117 80 °C 1.60 A om? Ref. 6
I mg Nafion o 100@0.1
GB-RuO; o2 117 80 °C 1.54 A om? Ref. 7
3 mg Nafion o 100@1
Er-RuOx o 117 80 °C 1.59 A om? Ref. 8
1 mg Nafion o 250@0.5
Pb-RuO> o 212 80 °C 1.68 A om? Ref. 9
41-Nd- 2 mg Nafion o 200@0.1
RUO» om? 115 60 °C 2.38 A om? Ref. 10
Bao3(S04)
sWosRugs S Mg Nafion g0 1es  200@0S  por
0 cm 115 A cm
2-8
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Table S6. The power and efficiency of the PEMWE by the Ae**-RuQ,, Com. RuO> and HM-RuO: as

anodic catalyst at different current densities.

Anodic  Current Efficiency Efficiency Energy Energy Energy
catalyst  density (HHV) (LHV) consumption consumption cost per
(Acm (kWh/kg (kWh/m? kilogram
%) H») H») of Hy
(USD/kg
H>)
1 88.22% 73.11% 45.02 3.6 0.9
Mg-RuO» 2 80.46% 66.68% 49.37 3.95 0.99
3 75.35% 62.44% 52.72 4.22 1.05
1 89.99% 74.57% 44.14 3.53 0.88
Ca-RuO 2 82.16% 68.08% 48.34 3.87 0.97
3 76.91% 63.74% 51.64 4.13 1.03
1 93.09% 77.14% 42.67 3.41 0.85
Sr-RuO» 2 84.12% 69.71% 47.22 3.78 0.94
3 80.39% 66.62% 49.41 3.95 0.99
1 91.43% 75.77% 43.44 3.48 0.87
Ba-RuO» 2 82.54% 68.4% 48.12 3.85 0.96
3 78.04% 64.67% 50.9 4.07 1.02
Com. 1 85.23% 70.63% 46.61 3.73 0.93
RUO» 2 77.35% 64.1% 51.35 4.11 1.03
3 72.75% 60.28% 54.6 4.37 1.09
1 82.11% 68.04% 48.38 3.87 0.97
HM-RuO; 2 74.07% 61.38% 53.63 4.29 1.07
3 69.37% 57.48% 57.26 4.58 1.15
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