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synthesized Ir@TiN at various magnifications before thermal treatment.

Figure S1. TEM images of as-



Figure S2. HAADF-STEM image and EDX elemental maps of as-synthesized Ir@TiN showing Ir, Ti,
and N distribution.



Figure S3. TEM images of (a) [r@TiN-600 (annealed at 600°C) (b) Ir nanoparticles with EDTA, (c) Pure
TiN.
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Figure S4. Ir Li-edge XANES spectra with whiteline fitting for the thermal series. (A-F) Normalized
spectra (blue) with arctangent background (orange). Shaded region indicates integrated whiteline area.

Vertical lines mark whiteline maxima.
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Figure S5. Whiteline metrics extracted from Figure S6. (a) Whiteline peak position versus annealing
temperature. (b) Integrated whiteline intensity. Dashed lines indicate IrO: (oxidized) and Ir/C (metallic)

references.
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Figure S6. XPS Ti 2p spectra of the thermal series. (a) Raw spectra. (b) Fitted spectra showing Ti-N and

Ti-O contributions.
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Figure S7. XPS N 1s spectra of the thermal series. (a) Raw spectra. (b) Fitted spectra.
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Figure S8. XPS O 1s spectra of the thermal series. (a) Raw spectra. (b) Fitted spectra.



—_ O Is Ir@TiN-400°C E OlIs Ir@TiN-600°C g O Is
E = =
< < < .
N S’ - |Ir@TiN-5002
£ = e )
2]
] = z
2 L ]
= E = Lﬂ—-&‘
i o =
537 534 531 528 525 537 534 531 528 525 537 534 531 528 525
d Binding energy (eV) Binding energy (eV) Binding energy (eV)
g Ols Ir@TiN-700°C Q Ols Ir@TiN-800°C
3 =
~ <
S’ S’
£ =
w wn
= =
2 2
= =
Ll el
537 534 531 528 525 537 534 531 528 525
Binding energy (eV) Binding energy (eV)

Figure S9. XPS spectra at different annealing temperatures. (a-d) O 1s spectra for Ir@TiN-400, -600, -700,

and -800. (¢) Raw Ir 4f spectra for all samples.
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Figure S10. EXAFS spectra in k-space with fitting results for the thermal series.
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Figure S11. Cyclic voltammetry curves at scan rates from 20 to 120 mV s™! for double-layer capacitance
determination. (a) [r@TiN-500. (b) Ir@TiN-600. (c) Ir@TiN-700. (d) Ir@TiN-800. (¢) Commercial IrO-.
(f) As-synthesized Ir@TiN. (g) Ir@TiN-400. (h) TiN support.

The electrochemical active surface area (ECSA) was calculated from the electrochemical double-layer

capacitance (Cg4) using equation:

c
Ecsa=_%
c

where Cy was measured by recording CV curves at different scan rates (20, 40, 60, 80,100,120 mV s*!). In
this work, a C, value of 60 uF cm was used to determine the ECSA as reported previously!. So ECSA
value is (a) [r@TiN-500 102.67 cm?. (b) Ir@TiN-600 56.00 cm?. (¢) Ir@TiN-700 36.67 cm?. (d) Ir@TiN-

800 33.00 cm?. (e) Commercial IrO2 109.33 cm?. (f) As-synthesized Ir@TiN 7.83 cm?. (g) Ir@TiN-400
3.17 cm?2.
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Figure S12. Electrochemical impedance spectroscopy analysis. (a) Equivalent circuit used for fitting. (b)

EIS Nyquist plots for all samples.
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Figure S13. Chronopotentiometry stability tests at 10 mA cm™. (a) Stability curves for the thermal series.
(b) Expanded view of Ir@TiN-400.
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Figure S14. TEM images after stability testing. (a) Ir@TiN-400. (b) Ir@TiN-500. (c) Ir@TiN-600. (d)
Ir@TiN-700. (e) Ir@TiN-800. (f) As-synthesized [r@TiN.
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Figure S15. Fourier-transformed EXAFS spectra with fitting for Ir@TiN-500 at different applied

potentials during operando measurements.
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Figure S16. Operando XANES spectra at the Ti K-edge for I[r@TiN-500 at different potentials.
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Figure S17. XANES spectra at the Ti K-edge for the thermal series.
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Figure S18. Operando Ir Ls-edge XANES with whiteline fitting for as-synthesized Ir@TiN. (a-e)
Normalized spectra at 0.4 V, 1.32 V, 1.54 V, 1.65 V, and 0.4 V return. Dashed lines show arctangent

background. Shaded regions indicate integrated whiteline area.
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Figure S19. Operando Ir Ls-edge XANES with whiteline fitting for Ir@TiN-500. (a-e) Normalized spectra
at0.4V,132V,1.54V,1.65V, and 0.4 V return.
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Figure S21. (a) TOF (b)Current density electrochemically active surface area (ECSA) (b).

Turnover frequency (TOF) values of the catalysts were calculated from the equation?:

J*xA
4xFxn

TOF =

where j is the current density at a given potential, A is the surface area of the electrode, F is the Faraday
constant (a value of 96485.3 C mol-1), and n is the amount of all Ir species on the electrode. All Ir atoms

were assumed accessible for catalyzing OER.
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Table S1. Electrochemical impedance parameters for Ir@TiN samples. Solution resistance (Rs) and

charge-transfer resistance (Rct) obtained from EIS fitting.

Samples Rs (QY) Ret (Q)

B0 _500°C 2493 19.24
B0 _600°C 24.43 25.74

B0 _700°C 25.06 28.69
Commercial IrO2 25.58 32.82
B0 _800°C 24.49 51.74

B0 _400°C 25.23 4368
BO 24.57 385.2
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Table S2. Chronopotentiometry stability at 10 mA cm 2. Time required to reach 100 mV potential increase

for each sample.

Samples Ir@TiN  [r@TiN-400 Ir@TiN-500 I[r@TiN- Ir@TiN- Ir@TiN-
600 700 800
Time for 100 mV 13h 0.7h 95h 42h 7.4h 7.4h

Table S3. Electrochemical performance metrics for Ir@TiN samples and controls. Mass activity at 1.54 V

vs. RHE, overpotential at 10 mA cm2, double-layer capacitance, and Tafel slope.

Sample Mass activity Potential at 10 Capacitance Slope (mV/dec)
(A/g ) @1.54V mA/cm? (mV) (mF/cm?)

Ir@TiN 33 0.47 96.39
Ir@TiN-400 10 0.19 182.8
Ir@TiN-500 342 325 6.16 39.47
Ir@TiN-600 255 340 3.36 44.76
Ir@TiN-700 118 369 2.2 46.44
Ir@TiN-800 79 399 1.98 54.38

C _IrO2 76 390 6.56 44.78

TiN 0.08
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Table S4. XPS Ir 4f peak positions and assignments for the thermal series. Binding energies relative to

Ir@TiN-500 (reference: 61.6 eV for Ir 4f7/2).

Peakl (eV) Peak2 (eV)
Samples
4fs af;, 4fs) af;,
64.95 +0.25 61.85 +0.25
Ir@TiN
Ir-O Ir-O
65.25 +0.55 62.15 +0.55
Ir@TiN-400
Ir-O Ir-O
64.7 0 61.6 0 63.65 0 60.9 0
Ir@TiN-500
Ir-O Ir-O Ir-Ir Ir-Ir
65.75 +1.05 624 +0.8 63.8 +0.15 60.7 -0.2
Ir@TiN-600
Ir-O Ir-O Ir-Ir Ir-Ir
64.00 +0.35 60.9 0
Ir@TiN-700
Ir-Ir Ir-Ir
63.7 +0.05 60.6 -0.3
Ir@TiN-800
Ir-Ir Ir-Ir

24



Table S5. XPS Ti 2p peak positions and assignments for the thermal series.

Peakl (eV) Peak2 (eV)
Samples
2p3p 2pin 2p3p 2pip

Ir@TiN 463 0.05 458 0.05 462 0.35 456 0.3
Ir@TiN-400 464 0.25 458 0.1 462 0.75 456 0.7
Ir@TiN-500 463 0 458 0 461 0 455 0
Ir@TiN-600 463 -0.05 458 -0.15 461 0.05 455 0.05
Ir@TiN-700 464 0.1 458 0 462 0.15 456 0.15
Ir@TiN-800 464 0.25 458 0.1 462 0.25 456 0.25

bonds Ti-O Ti-N
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Table S6. XPS N 1s peak positions and assignments for the thermal series.

Table S5. XPS Peak
Positions of N /s for

Ir@TiN Samples at Peakl (eV) Peak2 (eV)
Different Temperatures.
Samples

Ir@TiN 399.65 396.55
-N-C N-Metal

[r@TiN-400 398.9 396.3
N-O-Ti N-Metal

[r@TiN-500 399.15 396.45
N-O-Ti N-Metal

[r@TiN-600 398.8 396.2
N-O-Ti N-Metal

[r@TiN-700 399.3 396.45
C=N N-Metal

[r@TiN-800 399.55 396.4
C=N N-Metal
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Table S7. XPS O 1s peak positions and assignments for the thermal series.

Samples Peakl (eV) Peak2 (eV)
531.6 +0.80 529.95 +0.50
Ir@TiN
O-H O-Metal
532.35 +1.55 529.55 +0.10
Ir@TiN-400
O-H O-Metal
530.8 0 529.45 0
Ir@TiN-500
533.75
(adsO,, H,0) O-H O-Metal
532.45 +1.65 529.7 +0.25
Ir@TiN-600
O-H O-Metal
532.25 +1.45 529.75 +0.30
Ir@TiN-700
O-H O-Metal
532.35 +1.55 529.7 +0.25
Ir@TiN-800
O-H O-Metal

27



Table S8. EXAFS fitting results for the thermal series. Coordination numbers (CN), bond lengths, Debye-
Waller factors (0?), and energy shifts (Eo) for Ir-Ir and Ir-O shells.

Potentials Shell CN Bond length o2 (A2) E0 R
BO Ir-Ir(Ti) 0.21+0.94 2.48+0.25 0.0040 11.38 0.014
Ir-O(N) 6.38+1.12 2.03+0.015 0.0040 11.38
400 Ir-Ir(Ti) 1.79+1.27 2.54+0.08 0.0038 12.18 0.011
Ir-O(N) 4.58+0.91 2.03+0.01 0.0038 12.18
500 Ir-Ir 5.32+0.5 2.68+0.01 0.0055 7.14 0.005
Ir-O(N) 2.344+0.3 2.01+0.01 0.0055 11.70
600 Ir-Ir 9.84+1.6 2.70+0.009 0.0034 7.57 0.008
Ir-O(N) 0.54+0.31 2.00+0.049 0.0034 7.57
700 Ir-Ir 8.86+0.93 2.70+0.006 0.0048 6.63 0.003
Ir-O(N) 0.72+0.17 1.96+0.021 0.0048 6.63
800 Ir-Ir 8.78+1.1 2.72+0.008 0.0059 6.24 0.005
Ir-O(N) 0.82+0.2 2.01+0.023 0.0059 6.24
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Table S9. Operando EXAFS fitting results for Ir@TiN-500 at different applied potentials.

Potentials Shell CN Bond length o2 (A?) E0 R

Before Ir-Ir 5.3240.5 2.68+0.01 0.0055 7.14 0.005
Ir-O 2.34+0.3 2.01+0.01 0.0055 11.70

OCP Ir-Ir 4.95+0.5 2.68+0.01 0.0052 7.75 0.010
Ir-O 2.58+0.4 2.01+0.002 0.0079 11.14

0.4V Ir-Ir 4.62+0.5 2.68+0.01 0.0056 7.32 0.008
Ir-O 2.41+0.3 2.01+0.002 0.0068 9.34

1.32v Ir-Ir 1.96+1.2 2.65+0.01 0.0064 4.02 0.020
Ir-O 4.21+0.6 1.98+0.002 0.0059 9.09

1.54V Ir-Ir 0.68+0.9 2.68+0.090 0.0059 9.09 0.021
Ir-O 5.09+0.9 1.97+0.017

1.65V 0.024
Ir-O 5.87+0.5 1.97+0.001 0.0058 10.98

0.4V-back Ir-Ir 0.34+0.9 2.62+0.04 0.0047 11.17 0.019
Ir-O 5.17+1.2 2.02+0.01 0.0047 11.17
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Table S10. Operando EXAFS fitting results for as-synthesized Ir@TiN at different applied potentials.

Potentials ~ Shell CN Bond length ¢ (A% E0 R
Before Ir-Ir  0.21£0.94 2.48+0.25 0.0040 11.38 0.014
Ir-
6.38+1.12 2.03+0.015 0.0040 11.38
O(N)
0.4V Ir-Ir 0.94+1.24 2.48+0.069 0.0030 11.66 0.016
Ir-
7.07+1.27 2.04+0.017 0.0030 11.66
O(N)
132V Ir-Ir  0.83+£1.12 2.48+0.085 0.0063 11.87 0.013
Ir-
7.09+1.19 2.00+0.016 0.0063 11.82
O(N)
1.54V Ir-Ir  0.85£1.29 2.49+0.087 0.0066 11.38 0.015
Ir-
7.11£1.32 1.98+0.017 0.0066 12.34
ON)
1.65V Ir-Ir ~ 0.89+01.34  2.48+0.25 0.0064 11.80 0.016
Ir-
7.01+1.36 1.98+0.013 0.0064 11.80
ON)
0.4Vback  Ir-Ir  0.97+1.14 2.51£0.065 0.0051 11.67 0.016
Ir-
7.08+1.21 2.03£0.015 0.0051 11.67
O(N)
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Table S11. OER performance of Ir-based electrocatalysts in acidic medium.

Overpotential B
Mass activity Stability (h)
Catalyst Electrolyte (mV) Reference
(A gr) @ 10 mA cm?
@10 mA cm?
Commercial )
0.1 M HCIO, 390 76 @1.54V - This work
II'02
Ir@TiN-500 0.1 M HCIO, 325 342 @1.54V 9.5 This work
rO2@Ir/TiN 0.5 M H2SO,4 265 4804 @ 1.6V 6 2
TiN/IrO2 0.5 M H2S0, 313 8714 @ 1.6V <23 3
IrFeCoNiCu-
0.1 M HCIO, 302 34.67 @1.53V 12 4
HEA
Ir-doped
0.5 M H2S80, 218 766@1.53V 650 5
MnO2
Mn0.81r0.20y 0.5 M H2SO, 300 ~294@]1.53V - 6
Ir NS/TiO, 0.05 M H,SO, - 363 @1.55V 100 7
Ir-LiCoO, 0.5 M H2S80, ~233 433 @ 1.51V 1200 8
[t/'WO, 1,/TF 0.5 m H,SO4 259 1202.5 @1.53V 150 ?
Ir;06—Co050, 0.1 M HCIO, 253 519 @ 1.53V 200 10
CO-IrO,/oxi-
0.1 M HCIO, 277 542 @ 1.54V 100 !
TiN
IrO,/ TiN 0.1 M HCIO;, 293 270.8 @ 1.54V 250 1
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