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Figure S1. TEM images of as-synthesized Ir@TiN at various magnifications before thermal treatment.
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Figure S2. HAADF-STEM image and EDX elemental maps of as-synthesized Ir@TiN showing Ir, Ti, 

and N distribution.
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Figure S3. TEM images of (a) Ir@TiN-600 (annealed at 600°C) (b) Ir nanoparticles with EDTA, (c) Pure 

TiN.



5

Figure S4. Ir L₃-edge XANES spectra with whiteline fitting for the thermal series. (A-F) Normalized 

spectra (blue) with arctangent background (orange). Shaded region indicates integrated whiteline area. 

Vertical lines mark whiteline maxima.
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Figure S5. Whiteline metrics extracted from Figure S6. (a) Whiteline peak position versus annealing 

temperature. (b) Integrated whiteline intensity. Dashed lines indicate IrO₂ (oxidized) and Ir/C (metallic) 

references.
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Figure S6. XPS Ti 2p spectra of the thermal series. (a) Raw spectra. (b) Fitted spectra showing Ti-N and 

Ti-O contributions.
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Figure S7. XPS N 1s spectra of the thermal series. (a) Raw spectra. (b) Fitted spectra.
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Figure S8. XPS O 1s spectra of the thermal series. (a) Raw spectra. (b) Fitted spectra.
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Figure S9. XPS spectra at different annealing temperatures. (a-d) O 1s spectra for Ir@TiN-400, -600, -700, 

and -800. (e) Raw Ir 4f spectra for all samples.
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Figure S10. EXAFS spectra in k-space with fitting results for the thermal series.
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Figure S11. Cyclic voltammetry curves at scan rates from 20 to 120 mV s⁻¹ for double-layer capacitance 

determination. (a) Ir@TiN-500. (b) Ir@TiN-600. (c) Ir@TiN-700. (d) Ir@TiN-800. (e) Commercial IrO₂. 

(f) As-synthesized Ir@TiN. (g) Ir@TiN-400. (h) TiN support.

The electrochemical active surface area (ECSA) was calculated from the electrochemical double-layer 

capacitance (Cdl) using equation:

𝐸𝐶𝑆𝐴=
𝐶𝑑𝑙
𝐶𝑠

where Cdl was measured by recording CV curves at different scan rates (20, 40, 60, 80,100,120 mV s-1). In 

this work, a Cs value of 60 µF cm-2 was used to determine the ECSA as reported previously1. So ECSA 

value is ( a) Ir@TiN-500 102.67 cm2. (b) Ir@TiN-600 56.00 cm2. (c) Ir@TiN-700 36.67 cm2. (d) Ir@TiN-

800 33.00 cm2. (e) Commercial IrO₂ 109.33 cm2. (f) As-synthesized Ir@TiN 7.83 cm2. (g) Ir@TiN-400 

3.17 cm2.
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Figure S12. Electrochemical impedance spectroscopy analysis. (a) Equivalent circuit used for fitting. (b) 

EIS Nyquist plots for all samples.
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Fig. 

Figure S13. Chronopotentiometry stability tests at 10 mA cm⁻². (a) Stability curves for the thermal series. 

(b) Expanded view of Ir@TiN-400.
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Figure S14. TEM images after stability testing. (a) Ir@TiN-400. (b) Ir@TiN-500. (c) Ir@TiN-600. (d) 

Ir@TiN-700. (e) Ir@TiN-800. (f) As-synthesized Ir@TiN.
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Figure S15. Fourier-transformed EXAFS spectra with fitting for Ir@TiN-500 at different applied 

potentials during operando measurements.
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Figure S16. Operando XANES spectra at the Ti K-edge for Ir@TiN-500 at different potentials.
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Figure S17. XANES spectra at the Ti K-edge for the thermal series.
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Figure S18. Operando Ir L₃-edge XANES with whiteline fitting for as-synthesized Ir@TiN. (a-e) 

Normalized spectra at 0.4 V, 1.32 V, 1.54 V, 1.65 V, and 0.4 V return. Dashed lines show arctangent 

background. Shaded regions indicate integrated whiteline area.
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Figure S19. Operando Ir L₃-edge XANES with whiteline fitting for Ir@TiN-500. (a-e) Normalized spectra 

at 0.4 V, 1.32 V, 1.54 V, 1.65 V, and 0.4 V return.
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Figure S20 Wavelet transform analysis for samples of Ir@TiN-500 at 1.54V and 1.65V.

Figure S21.  (a) TOF  (b)Current density electrochemically active surface area (ECSA) (b).

Turnover frequency (TOF) values of the catalysts were calculated from the equation2:  

𝑇𝑂𝐹=
𝑗 ∗ 𝐴

4 ∗ 𝐹 ∗ 𝑛

where j is the current density at a given potential, A is the surface area of the electrode, F is the Faraday 

constant (a value of 96485.3 C mol-1), and n is the amount of all Ir species on the electrode. All Ir atoms 

were assumed accessible for catalyzing OER.
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Table S1. Electrochemical impedance parameters for Ir@TiN samples. Solution resistance (Rs) and 

charge-transfer resistance (Rct) obtained from EIS fitting.

 

Samples Rs (Ω) Rct (Ω)

B0_500℃ 24.93 19.24

B0_600℃ 24.43 25.74

B0_700℃ 25.06 28.69

Commercial IrO2 25.58 32.82

B0_800℃ 24.49 51.74

B0_400℃ 25.23 4368

B0 24.57 385.2
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Table S2. Chronopotentiometry stability at 10 mA cm⁻². Time required to reach 100 mV potential increase 

for each sample.

Samples Ir@TiN Ir@TiN-400 Ir@TiN-500 Ir@TiN-
600

Ir@TiN-
700

Ir@TiN-
800

Time for 100 mV  13 h 0.7 h 9.5 h 4.2 h 7.4 h 7.4 h

Table S3. Electrochemical performance metrics for Ir@TiN samples and controls. Mass activity at 1.54 V 

vs. RHE, overpotential at 10 mA cm⁻², double-layer capacitance, and Tafel slope.

Sample Mass activity 
(A/g_Ir) @1.54V

Potential at 10 
mA/cm² (mV)

Capacitance 
(mF/cm²)

Slope (mV/dec)

Ir@TiN 33
 

0.47 96.39

Ir@TiN-400 10
 

0.19 182.8

Ir@TiN-500 342 325 6.16 39.47

Ir@TiN-600 255 340 3.36 44.76

Ir@TiN-700 118 369 2.2 46.44

Ir@TiN-800 79 399 1.98 54.38

C_IrO2 76 390 6.56 44.78

TiN
  

0.08
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Table S4. XPS Ir 4f peak positions and assignments for the thermal series. Binding energies relative to 

Ir@TiN-500 (reference: 61.6 eV for Ir 4f₇/₂).

Peak1 (eV) Peak2 (eV)
Samples

4f5/2 4f7/2 4f5/2 4f7/2

64.95 +0.25 61.85 +0.25

Ir@TiN

Ir-O Ir-O

65.25 +0.55 62.15 +0.55

Ir@TiN-400

Ir-O Ir-O

64.7 0 61.6 0 63.65 0 60.9 0

Ir@TiN-500

Ir-O Ir-O Ir-Ir Ir-Ir

65.75 +1.05 62.4 +0.8 63.8 +0.15 60.7 -0.2

Ir@TiN-600

Ir-O Ir-O Ir-Ir Ir-Ir

64.00 +0.35 60.9 0

Ir@TiN-700

Ir-Ir Ir-Ir

63.7 +0.05 60.6 -0.3

Ir@TiN-800

Ir-Ir Ir-Ir
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Table S5. XPS Ti 2p peak positions and assignments for the thermal series.

Peak1 (eV) Peak2 (eV)
Samples

2p3/2 2p1/2 2p3/2 2p1/2

Ir@TiN 463 -
0.05 458 -

0.05 462 0.35 456 0.3

Ir@TiN-400 464 0.25 458 0.1 462 0.75 456 0.7

Ir@TiN-500 463 0 458 0 461 0 455 0

Ir@TiN-600 463 -0.05 458 -0.15 461 0.05 455 0.05

Ir@TiN-700 464 0.1 458 0 462 0.15 456 0.15

Ir@TiN-800 464 0.25 458 0.1 462 0.25 456 0.25

bonds Ti-O Ti-N
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Table S6. XPS N 1s peak positions and assignments for the thermal series.

Table S5. XPS Peak 
Positions of N 1s for 
Ir@TiN Samples at 

Different Temperatures. 
Samples

Peak1 (eV) Peak2 (eV)

399.65 396.55Ir@TiN

-N-C N-Metal

398.9 396.3Ir@TiN-400

N-O-Ti N-Metal

399.15 396.45Ir@TiN-500

N-O-Ti N-Metal

398.8 396.2Ir@TiN-600

N-O-Ti N-Metal

399.3 396.45Ir@TiN-700

C≡N N-Metal

399.55 396.4Ir@TiN-800

C≡N N-Metal
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Table S7. XPS O 1s peak positions and assignments for the thermal series.

Samples Peak1 (eV) Peak2 (eV)

531.6 +0.80 529.95 +0.50

Ir@TiN

O-H O-Metal

532.35 +1.55 529.55 +0.10

Ir@TiN-400

O-H O-Metal

530.8 0 529.45 0

Ir@TiN-500
533.75

 (adsO2, H2O) O-H O-Metal

532.45 +1.65 529.7 +0.25

Ir@TiN-600

O-H O-Metal

532.25 +1.45 529.75 +0.30

Ir@TiN-700

O-H O-Metal

532.35 +1.55 529.7 +0.25

Ir@TiN-800

O-H O-Metal
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Table S8. EXAFS fitting results for the thermal series. Coordination numbers (CN), bond lengths, Debye-

Waller factors (σ²), and energy shifts (E₀) for Ir-Ir and Ir-O shells.

Potentials Shell CN Bond length  σ2  (Å2) E0 R

B0 Ir-Ir(Ti) 0.21±0.94 2.48±0.25 0.0040 11.38 0.014

Ir-O(N) 6.38±1.12 2.03±0.015 0.0040 11.38

400 Ir-Ir(Ti) 1.79±1.27 2.54±0.08 0.0038 12.18 0.011

Ir-O(N) 4.58±0.91 2.03±0.01 0.0038 12.18

500 Ir-Ir 5.32±0.5 2.68±0.01 0.0055 7.14 0.005

Ir-O(N) 2.34±0.3 2.01±0.01 0.0055 11.70

600 Ir-Ir 9.84±1.6 2.70±0.009 0.0034 7.57 0.008

Ir-O(N) 0.54±0.31 2.00±0.049 0.0034 7.57

700 Ir-Ir 8.86±0.93 2.70±0.006 0.0048 6.63 0.003

Ir-O(N) 0.72±0.17 1.96±0.021 0.0048 6.63

800 Ir-Ir 8.78±1.1 2.72±0.008 0.0059 6.24 0.005

Ir-O(N) 0.82±0.2 2.01±0.023 0.0059 6.24
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Table S9. Operando EXAFS fitting results for Ir@TiN-500 at different applied potentials.

Potentials Shell CN Bond length  σ2  (Å2) E0 R

Before Ir-Ir 5.32±0.5 2.68±0.01 0.0055 7.14 0.005

Ir-O 2.34±0.3 2.01±0.01 0.0055 11.70

OCP Ir-Ir 4.95±0.5 2.68±0.01 0.0052 7.75 0.010

Ir-O 2.58±0.4 2.01±0.002 0.0079 11.14

0.4V Ir-Ir 4.62±0.5 2.68±0.01 0.0056 7.32 0.008

Ir-O 2.41±0.3 2.01±0.002 0.0068 9.34

1.32V Ir-Ir 1.96±1.2 2.65±0.01 0.0064 4.02 0.020

Ir-O 4.21±0.6 1.98±0.002 0.0059 9.09

1.54V Ir-Ir 0.68±0.9 2.68±0.090 0.0059 9.09 0.021

Ir-O 5.09±0.9 1.97±0.017

1.65V 0.024

Ir-O 5.87±0.5 1.97±0.001 0.0058 10.98

0.4V-back Ir-Ir 0.34±0.9 2.62±0.04 0.0047 11.17 0.019

Ir-O 5.17±1.2 2.02±0.01 0.0047 11.17
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Table S10. Operando EXAFS fitting results for as-synthesized Ir@TiN at different applied potentials.

Potentials Shell CN Bond length  σ2  (Å2) E0 R

Before Ir-Ir 0.21±0.94 2.48±0.25 0.0040 11.38 0.014

Ir-

O(N)
6.38±1.12 2.03±0.015 0.0040 11.38

0.4V Ir-Ir 0.94±1.24 2.48±0.069 0.0030 11.66 0.016

Ir-

O(N)
7.07±1.27 2.04±0.017 0.0030 11.66

1.32 V Ir-Ir 0.83±1.12 2.48±0.085 0.0063 11.87 0.013

Ir-

O(N)
7.09±1.19 2.00±0.016 0.0063 11.82

1.54 V Ir-Ir 0.85±1.29 2.49±0.087 0.0066 11.38 0.015

Ir-

O(N)
7.11±1.32 1.98±0.017 0.0066 12.34

1.65 V Ir-Ir 0.89±01.34 2.48±0.25 0.0064 11.80 0.016

Ir-

O(N)
7.01±1.36 1.98±0.013 0.0064 11.80

0.4V back Ir-Ir 0.97±1.14 2.51±0.065 0.0051 11.67 0.016

Ir-

O(N)
7.08±1.21 2.03±0.015 0.0051 11.67
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Table S11. OER performance of Ir-based electrocatalysts in acidic medium.

Catalyst Electrolyte

Overpotential

(mV)

@10 mA cm-2

Mass activity

(A gIr
-1)

Stability (h)

@ 10 mA cm-2
Reference

Commercial 

IrO2
0.1 M HClO4 390 76 @1.54V - This work

Ir@TiN-500 0.1 M HClO4 325 342 @1.54V 9.5 This work

IrO2@Ir/TiN 0.5 M H2SO4 265 480.4 @ 1.6 V 6 2

TiN/IrO2  0.5 M H2SO4 313 874 @ 1.6 V <2.3 3

IrFeCoNiCu-

HEA 
0.1 M HClO4 302 34.67 @1.53V 12 4

Ir-doped 

MnO2
0.5 M H2SO4 218 766@1.53V 650 5

Mn0.8Ir0.2Oy 0.5 M H2SO4 300 ~294@1.53V - 6

Ir NS/TiO2 0.05 M H2SO4 - 363 @1.55V 100 7

Ir-LiCoO2 0.5 M H2SO4 ≈233 433 @ 1.51V  1200 8

 Ir/WO2.72/TF 0.5 m H2SO4 259 1202.5 @1.53V 150 9

Ir1O6–Co3O4 0.1 M HClO4 253 519 @ 1.53V 200 10

CO-IrOx/oxi-

TiN
0.1 M HClO4 277 542 @ 1.54V 100 1

IrOx/ TiN 0.1 M HClO4 293 270.8 @ 1.54V 250 11
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