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24 Supplementary Fig. 1. Schematic diagram of catalytic reforming of biomass
25 pyrolysis tar to hydrogen.
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39 Supplementary Fig. 2. Reduction characteristics of the catalyst (H,-TPR of fresh
40 Fe/C, which shows three reduction peaks, Fe,O;—Fe;0,—FeO—Fe).
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Supplementary Fig. 3. Reduction characteristics of the spent Fe/C catalyst.

As can be seen in Fig. 3, changing the ratio of catalyst to biomass has little effect
on the peak shape of the reduction peak, the difference being that increasing the
amount of catalyst results in a flatter positional curve of the reduction peak, which can

be attributed to the high content of +2 and +3 valent iron in the catalyst.
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Supplementary Fig. 4. Reduction characteristics of the spent Fe/C catalyst.

From the Fig. 4, it can be seen that when the ratio of catalyst to biomass is 3:4,
the position curves of the first and second reduction peaks are flatter, which can be
attributed to the higher content of Fe;O, in the catalyst. Again, the third reduction
peak has an earlier reduction temperature and a sharp peak shape, which indicates that
there is less iron content in the +2, which is rapidly reduced in a short period of time.
Meanwhile, the curve of the last hydrogen reduction peak is also flat, which is
attributed to the presence of a large amount of Fe-Ca compounds in the catalyst. The
peak shape of the hydrogen reduction peak when the mass ratio of the two is 1:2 is
sharper showing a volcano shape and the temperature range of the reduction curve is
narrower, which indicates that the valence of iron species in this catalyst is

concentrated in +2 and +3.
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Supplementary Fig. 5. Fe 2p evolution of spent Fe-CaO/C catalyst.

In Fe 2p spectra, the peaks at 710.8 and 726.4 eV, 715.2 and 727.9 eV were

marked as 2 p3;; and 2 py; of Fe** and Fe3", respectively.
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Supplementary Fig. 6. Ca 2p evolution of spent Fe-CaQ/C catalyst

In Ca 2p spectra, around 351 eV and 347 eV are Ca 2pl/2 and Ca 2p3/2,

respectively.
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Supplementary Fig. 7. O 1s evolution of spent Fe-CaQ/C catalyst.

The O 1s was fitted to the peaks of lattice O (Or), oxygen vacancy (Oy) and O-H
bond by Gaussian functions. The calculation of the relative content of each oxygen
species was determined by area integration. The addition of mass ratio (1:2—3:4) the

Ov concentration decreases (78.00%—66.32%).
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Supplementary Fig. 8. C 1s evolution of spent Fe-CaO/C catalyst.

The high-resolution C 1s spectra can be assign to C-C, C-C and C-O bonds at

284.2,285.4 and 288.6 eV, respectively.
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146 Supplementary Fig. 9. Schematic of the preparation process of bio-char and
147 the preparation of catalyst.
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Supplementary Fig. 10. Morphology characterizations and particle dimension

frequency of the fresh catalysts Fe-CaO-Ni/0.2HC fresh catalyst.

The smaller, darker particles represent the active component metal oxides, while
the larger, lighter blocks represent the alloy. The average particle size of the Fe-CaO-

Ni/0.2HC catalyst is 18.84 nm.
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Supplementary Fig. 11. surface characterizations and element distribution of the

fresh catalysts Fe-CaO-Ni/0.2HC fresh catalyst.

The EDX results show that the catalyst surface contains mainly Fe, Ni, Ca, C and

O, with no other heterogeneous elements.
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Supplementary Fig. 12. TEM dark field image of fresh catalysts Fe-CaO-

Ni/0.2HC fresh catalyst.

The smaller particles represent the active component metal oxides, while the

larger blocks represent the alloy.
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Supplementary Fig. 13. Morphology characterizations and particle dimension

frequency of the fresh Fe-CaO-Ni/0.3KC fresh catalyst.

Cube-shaped thin layers outside particles are clearly observed on catalyst surface.
The average particle size of Fe-CaO-Ni/0.3KC catalyst is 20.61nm, larger than those

in Fe-CaO-N1/O.2HC.
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Supplementary Fig. 14. surface characterizations and element distribution of the

fresh Fe-CaO-Ni /0.3KC fresh catalyst.

Cube-shaped thin layers outside particles are clearly observed on catalyst surface.
The EDX results show that the catalyst surface contains mainly Fe, Ni, Ca, C and O,

with no other heterogeneous elements.
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Supplementary Fig. 15. TEM dark field image of fresh catalysts Fe-CaO-

Ni/0.2HC fresh Fe-CaO-Ni/0.3KC.

Cube-shaped thin layers outside particles are clearly observed on catalyst surface.
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242 Supplementary Fig. 16. elemental mapping images of fresh catalysts Fe-CaO-
243 Ni/0.3KC.

244

245 C, O, Fe, Ni and Ca can be observed in the TEM mapping diagram, where the
246 positions of Fe and Ni overlap.
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Supplementary Fig. 17. TEM image and particle distribution of spent Fe-CaO-

Ni/0.2HC.

Dark black particles and carbon film can be seen in TEM image, and the
particle size statistics of the particles in the figure yielded that the size of the

particles was 34.68 nm, which was larger than that of the fresh catalyst particles.
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273 Supplementary Fig. 18. High-resolution TEM of spent Fe-CaO-Ni/0.3KC.
274

275 The presence of carbon cladding with ordered carbon streaks was also
276 confirmed in the high-resolution TEM images.
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Supplementary Fig. 19. Particle distribution of spent Fe-CaO-Ni/0.3KC.
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Table S1. Proximate and ultimate analyses of the WS.

Proximate analysis (wt%, d)

Ultimate analysis (wt%, daf)

VM A FC
WS 83.62 8.44 7.94
H-WS

79.84 3.72 16.44

C H o N S
47.34 7.13 44.35 1.02 0.16
51.72 6.49 40.59 1.13 0.07

306 VM: volatile matter; A: ash; FC: fixed carbon; d: dry basis; daf: dry ash free basis. a: By

307 difference.
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Table S2. Biomass pyrolysis product distribution in the 500-800 °C temperature

range.
Y char (in Yioww (in
YHO (ln wt% YGas (1n wt%
wt% of wt% of
of biomass, of biomass,
biomass, biomass,
daf) daf)
daf) daf)
600 °C 4.94 29.73 27.93 37.40
700 °C 4.06 32.78 27.96 35.20
800 °C 1.71 34.00 27.99 36.30
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Table S3. Textural properties of the catalysts.

Surface Area

Pore Volume

Average pore

Catalyst
(m?/g) (cm?/g) diameter (nm)
Fresh Fe-Ni-Ca/0.2HC 727.80 0.599 3.17
Fresh Fe-Ni-Ca/0.3KC 904.62 0.598 2.64
Spent Fe-Ni-Ca/0.3KC 269.62 0.233 3.45
Bio-char 235.77 0.159 2.70
AC 947.38 0.515 2.26
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Table S4. Comparison of this work with relevant research on hydrogen
yield and key reaction conditions.
Temperature Hydrogen
Feedstock Catalyst Ref.
(°C) content (mL/g)

Hemicellulose 800 - 136.42 1
Biomass tar 900 Ni-Fe/ASA@HZSM-5 110.5 2
Wheat straw 750 Fe/Char 81.39 3
Wheat straw 650 Ni—Co—Mn 59.58 4

Biomass 923 CaCOs 308 5
Chinese herb
700 K-Fe 135.36 6
residues
Pine sawdust 600 Ni-Ce/C9A3(AN-CF) 294.31 7
Wheat straw 600 Fe-Ni-Ca/Char 345 This work
References:

1.

G. Chen, W. Du, J. Cai, J. Li, J. Tao, M. Irfan Rajput, B. Yan, Z. Wang, Applications in
Energy and Combustion Science, 2025, 24, 100381.

X. Li, Z. Wang, Y. Zhang, W. Zhang, H. Zhang, P. Liu, T. Lei, Journal of Environmental
Management, 2025, 389, 126016.

Y. Shi, W. Zhao, M. Tahir, E. Lora, A. N. Kozlov, M. V. Penzik, Y. Zhang, S. Zhang, Journal
of Analytical and Applied Pyrolysis, 2026, 194, 107539.

M. Xu, Z. Shi, X. Zhu, Y. Lai, A. Xia, Y. Huang, X. Jiang, J. He, M. Zhou, X.Zhu, Q. Liao,
International Journal of Hydrogen Energy, 2024, 52,83-96.

R.D. Gomez Vasquez, J. D. Rhenals-Julio, J. M. Mendoza, J.Acevedo, A. Silvera, Applied
Thermal Engineering, 2025, 272, 126454.

Y. Li, Z. Guo, H. Zhu, F. Wang, L. Lang, X. Yin, C. Wu, International Journal of Hydrogen
Energy, 2025, 196, 152543,

C. Wei, X. Zeng, X. Wang, Z. Jian, G. Hao, C. Xiao, D. Gong, Journal of the Energy Institute,
2025, 123, 102328.



366

367

368

369

370

371

372

373

374

375

Table S5. ICP result of bio-char
Content
Si Al Ca Fe K Mg Na
(Wt%)
Bio-char 1.04 0.06 1.36 0.09 2.09 0.33 0.12




