

Supporting Information

2 *Multifunctional Self-Healing Superhydrophobic Coating with Rapid Sunlight-*

3 Induced Recovery and Photothermal Anti-Icing Capability

4 Alix Marcelle Sansi Seukep^{1,3}, Damas Rossel Pandzou⁴, Xuan Zhou^{1,3}, Syeda

5 Andleeb Zahra Naqvi^{1,3}, Dhandapani Kuzhandaivel^{1,3}, Abilash Rosario

6 Arockiyasamy^{1,3}, MD Salman Farssee^{1,3}, Zixiang Weng¹, Xiaohong Ding^{1,2*}, Lixin

7 Wu^{1*}

8 *Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter,*

9 Chinese Academy of Sciences, Fuzhou 350002, PR China

10 *²Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecological and*

11 *Resources Engineering, Wuyi University, 354300, Wuyishan, PR China*

12 ³University of Chinese Academy of Sciences, Beijing 100049, PR China

13 ⁴College of Transportation Engineering, Fujian University of Technology, Fuzhou, Fujian 350118, China

14

15

16 *Corresponding authors.

17 Xiaohong Ding: dingxh@fjirsm.ac.cn; Lixin Wu: lxwu@fjirsm.ac.cn

18

19

20

21 **Experimental section**

22 *1.1 High-pressure water-jet impingement test*

23 The coating's dynamic impingement resistance was assessed using a high-pressure
24 water-jetting setup (a programmable rain test chamber, HT-IP9K-1000L). The coated glass
25 substrate was positioned vertically (90° tilt), and a continuous water jet (25 kPa) was applied from
26 a distance of 5 cm at a speed of 10 m/s. The surface was exposed to the jet for increasing durations
27 (0–150 s), after which the WCA and SA were recorded to evaluate changes in wetting behavior.

28

29 *1.2. Chemical and physical self-healing tests*

30 To evaluate the self-healing capacity of the coatings, two types of damage were induced:
31 chemical and mechanical. Chemical degradation was simulated by treating the coatings for 3 min
32 using an O₂-plasma system. Mechanical damage was inflicted by creating a surface scratch with a
33 new razor blade. Following damage, samples were exposed to simulated sunlight from a xenon
34 lamp solar simulator (CEL-HXF300-T3, Beijing Zhongjiao Jinyuan Technology Co., Ltd., China)
35 for 5 min to activate the healing process. The recovery from chemical damage was quantified by
36 measuring the WCA before and after healing to track the loss and subsequent restoration of
37 superhydrophobicity. Microstructural recovery was assessed by examining scratch morphology
38 using optical microscopy and FE-SEM, comparing the damaged and healed states.

39

40 *1.3. Mechanical and chemical durability tests*

41 The mechanical robustness of the coatings was evaluated through a series of tests designed
42 to simulate harsh environmental stresses, including sand abrasion, high-pressure water impact, and
43 sandpaper wear.

44 *Sand abrasion resistance.* Cyclic sand abrasion tests were conducted by releasing 500 g of silica
45 sand (300–400 µm particle size) from a height of 40 cm onto the coated surface, inclined at 45°.
46 The sand was delivered in 10 increments of 50 g each. Water contact angles (WCAs) and sliding
47 angles (SAs) were measured after each full cycle to quantify the retention of superhydrophobicity.

48 *Water impact resistance.* Coatings were subjected to a high-impact water jet spray totaling 5000
49 L over 24 hours, directed at a 45° angle from 50 cm. The WCAs and SAs were recorded at 4-hour
50 intervals to monitor degradation under sustained hydraulic pressure.

51 *Sandpaper abrasion Test.* Samples were placed face-down on 800- or 1000-grit SiC sandpaper
52 and subjected to linear abrasion under a 200 g load. Each 15 cm forward movement constituted
53 one cycle. WCAs and SAs were measured after every 10 cycles, up to a total of 50 cycles. To
54 evaluate the self-healing capability post-abrasion, mechanically stressed coatings were irradiated
55 under simulated sunlight (1.0 sun) for 5 min. Recovery of surface morphology was observed using
56 optical microscopy, and the corresponding restoration of superhydrophobicity was confirmed
57 through WCA and SA measurements.

58 *Tape-peeling adhesion test.* Adhesion durability was evaluated using a standard tape-peeling
59 procedure following ASTM D3359. A 3M #600 adhesive tape (25.4 mm width, 50 μm thickness)
60 was firmly applied to the coating under a uniform pressure of 2.6 kPa and then peeled off in a
61 single motion. This process was repeated for multiple cycles, after which the WCA and SA were
62 recorded to assess any changes in surface wettability.

63 *UV Aging resistance evaluation.* The coatings were placed in a UV-aging chamber equipped with
64 a 400 W full-spectrum solar simulator, where they were subjected to alternating cycles consisting
65 of 4 h UVA irradiation at 1000 W/m^2 and 60 $^\circ\text{C}$, followed by 4 h condensation at 50 $^\circ\text{C}$. After
66 designated numbers of cycles, the WCAs and SAs were measured to evaluate the retention of
67 hydrophobic performance.

68 *Chemical stability* was evaluated by immersing coatings in varying pH levels: acidic (pH 1),
69 neutral (pH 6), and alkaline (pH 13) solutions for 24 hours. WCA was measured after immersion
70 to assess superhydrophobicity retention. To evaluate self-healing, chemically treated coatings were
71 irradiated under simulated sunlight (1 sun) for 5 min. Surface recovery was characterized using
72 atomic force microscopy (AFM) for topographic analysis, while superhydrophobicity restoration
73 was confirmed through WCA measurements.

74

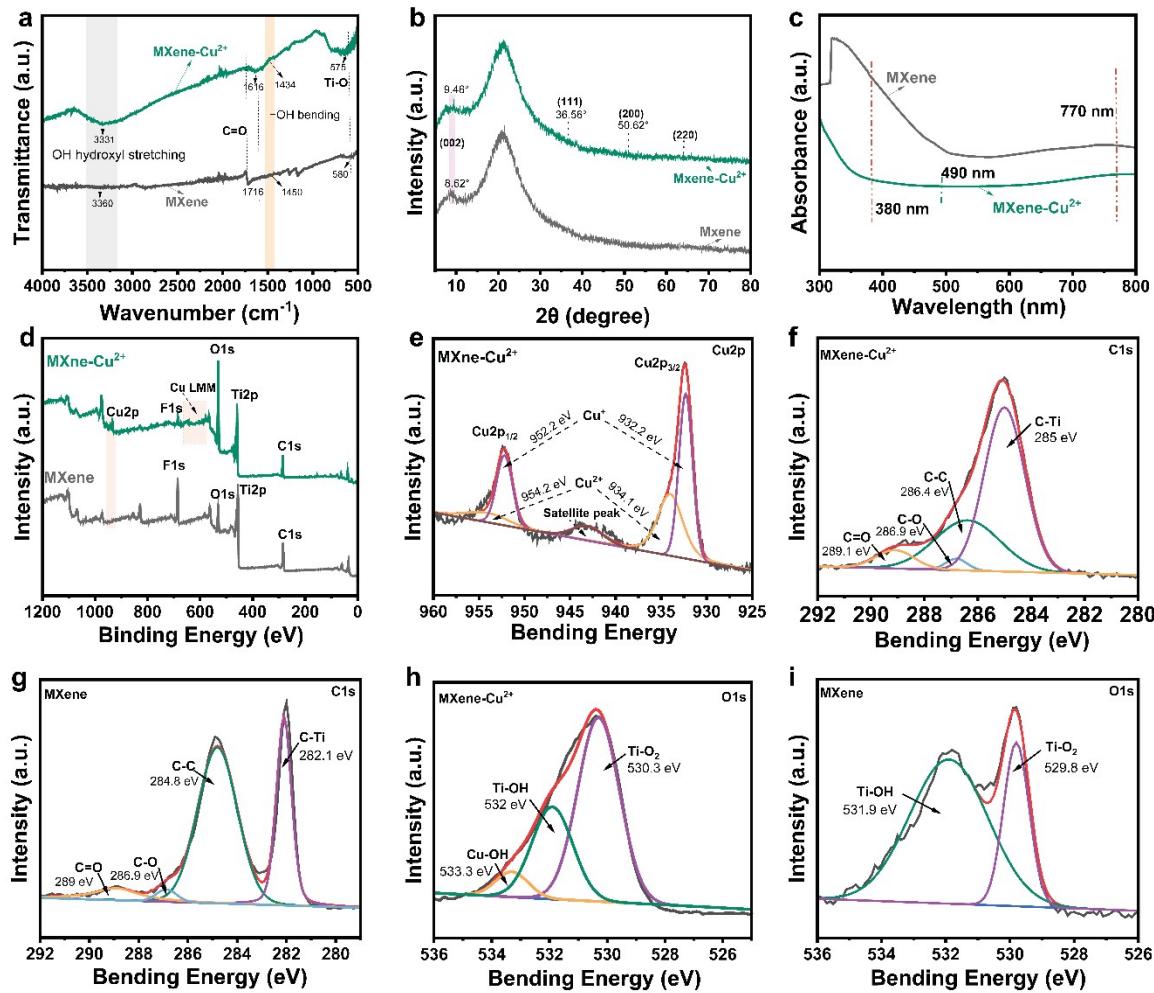
75 *1.4. Self-cleaning test*

76 The self-cleaning performance of the MESH coating was evaluated by depositing sand
77 contaminants on both coated and uncoated glass surfaces inclined at 10 $^\circ$. Water droplets (4 mL)
78 were introduced to the upper surface, and contaminant removal efficiency was quantified by
79 comparing residual sand particles after droplet roll-off.

80 *1.5. Dual-mode anti-icing performance*

81 Static anti-icing tests were conducted at -20°C under 80% relative humidity to simulate cold,
82 humid environments. The experiments were performed in a programmable constant-temperature
83 and humidity chamber (HD-ED702-504K70, Haida Instrument Co., Ltd., China; operating range
84 -40 to 80°C , $\pm 1^{\circ}\text{C}$, -100 to 100 % RH). Prior to testing, samples were equilibrated at $-20^{\circ}\text{C}/80\%$
85 RH for 1 h to ensure stable environmental conditions.

86 *Static passive anti-icing* performance was evaluated by depositing a 40 μL dyed (methyl red) water
87 droplet onto both coated and uncoated glass substrates at $-20^{\circ}\text{C}/80\%$ RH, and recording the
88 freezing time using digital camera.


89 *Active anti-icing* was tested by repeating the droplet freezing assay under 1 sun irradiation while
90 recording the delayed freezing process.

91 *Dynamic passive anti-icing test.* Cold water droplets (0°C , $\sim 40 \mu\text{L}$) were continuously dispensed
92 onto a 20° -tilted glass or MESH-coated substrate inside a low-temperature chamber maintained at
93 -10°C and 80% relative humidity. The onset of freezing, and subsequent ice accumulation were
94 monitored and recorded using a digital camera to determine the dynamic icing resistance.

95 *Active de-icing test.* A uniform ice layer was first generated on the sample surfaces under -20°C
96 and 80% RH. The iced substrates, positioned at a 20° tilt, were then exposed to 1.0-sun irradiation
97 while remaining inside the same low-temperature chamber. The melting and detachment of ice
98 were recorded using a digital camera.

99 *Ice adhesion strength* was measured using a using a lab-built force transducer, which detached
100 ice from the surface at 0.1 mm/s. The peak force was recorded, and the average of three tests
101 reported as ice adhesion strength.

102

103

104 **Figure S1.** (a) ATR-FTIR spectra, (b) XRD patterns, and (c) UV-vis spectra of MXene and MXene-Cu²⁺. (d)
105 XPS survey spectra, and (e–i) high-resolution XPS spectra of Cu 2p, C 1s, and O 1s for MXene-Cu²⁺ and
106 MXene, respectively.

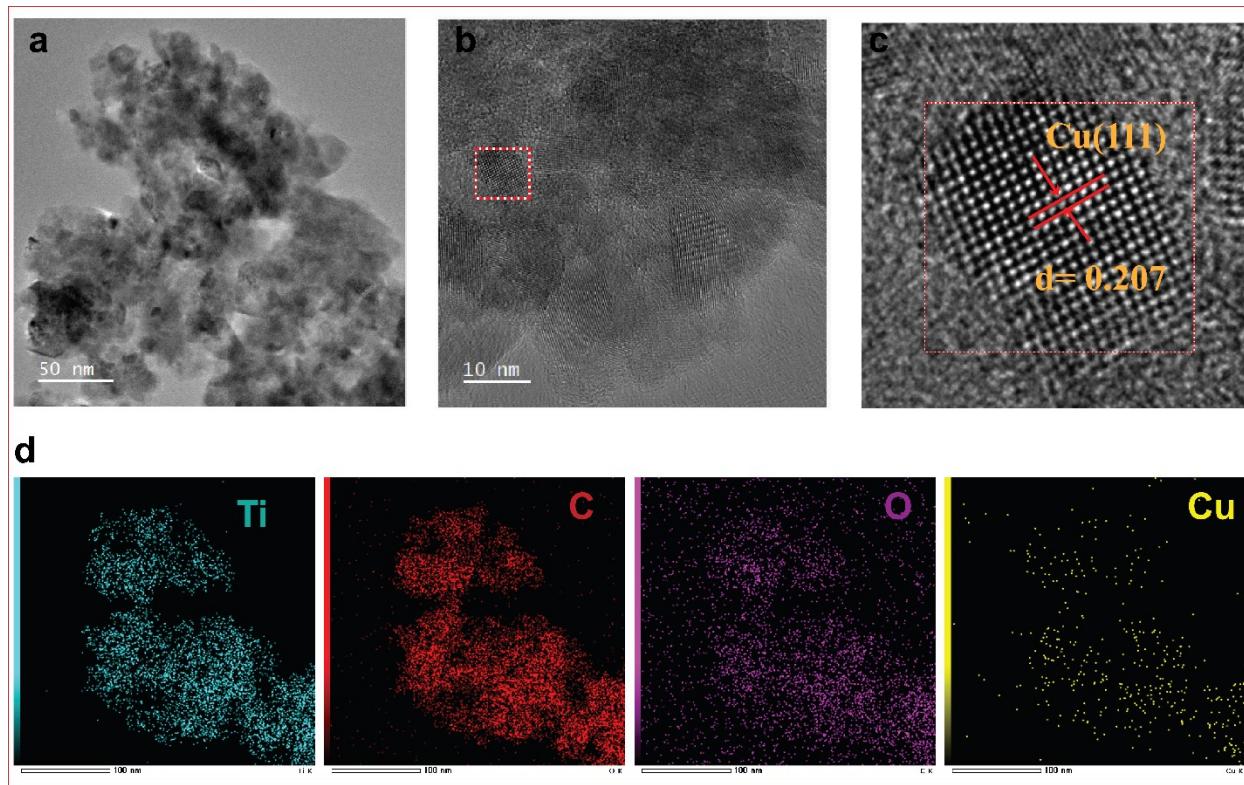
107

108

109

110

111


112

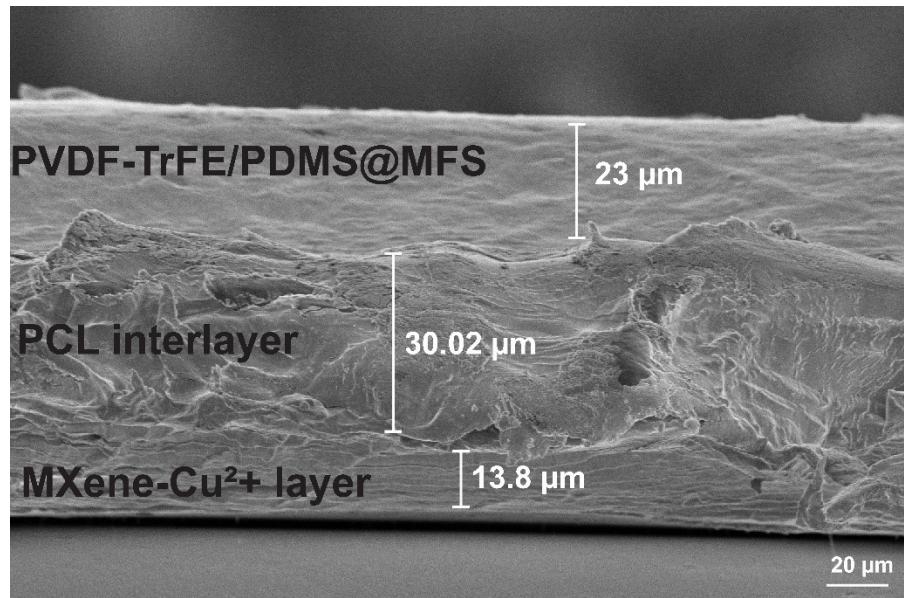
113

114

115 The TEM image (Figure S2a) revealed well-defined nanosheet structures decorated with
 116 uniformly distributed nanoparticles, while the HRTEM image (Figure S2b) offered a closer view
 117 of the lattice fringes, confirming the crystalline nature of the embedded copper species. Notably,
 118 the zoomed-in HRTEM image (Figure S2c) displayed distinct lattice planes corresponding to
 119 Cu(111), with an interplanar spacing of 0.207 nm, further validating the presence of metallic
 120 copper domains. Complementary elemental mapping (Figure S2d) showed homogeneous
 121 distribution of Ti, C, O, and Cu across the nanosheet surface, indicating successful doping and
 122 intimate integration of Cu²⁺ within the MXene nanosheets. These findings collectively confirm the
 123 structural and compositional integrity of the MXene–Cu²⁺ hybrid, supporting its potential for
 124 enhanced functional performance.

125

126


127 **Figure S2.** (a–c) TEM and HRTEM images of MXene–Cu²⁺, and (d) TEM elemental mapping image of MXene–
 128 Cu²⁺.

129

130

131

132

133

134

Figure S3. Cross-sectional SEM image of the MESH coating

135

136

137 **Impalement Resistance Mechanism**

138

139 The coating's resistance to liquid impalement under dynamic impact is governed by the
140 pressure balance between the hammer pressure (P_h) of the incoming jet and the capillary
141 pressure (P_c) generated by the surface structure.¹ According to established models' formula S1
142 and S2:

$$143 \quad P_h \approx 0.2\rho C v \quad (1)$$

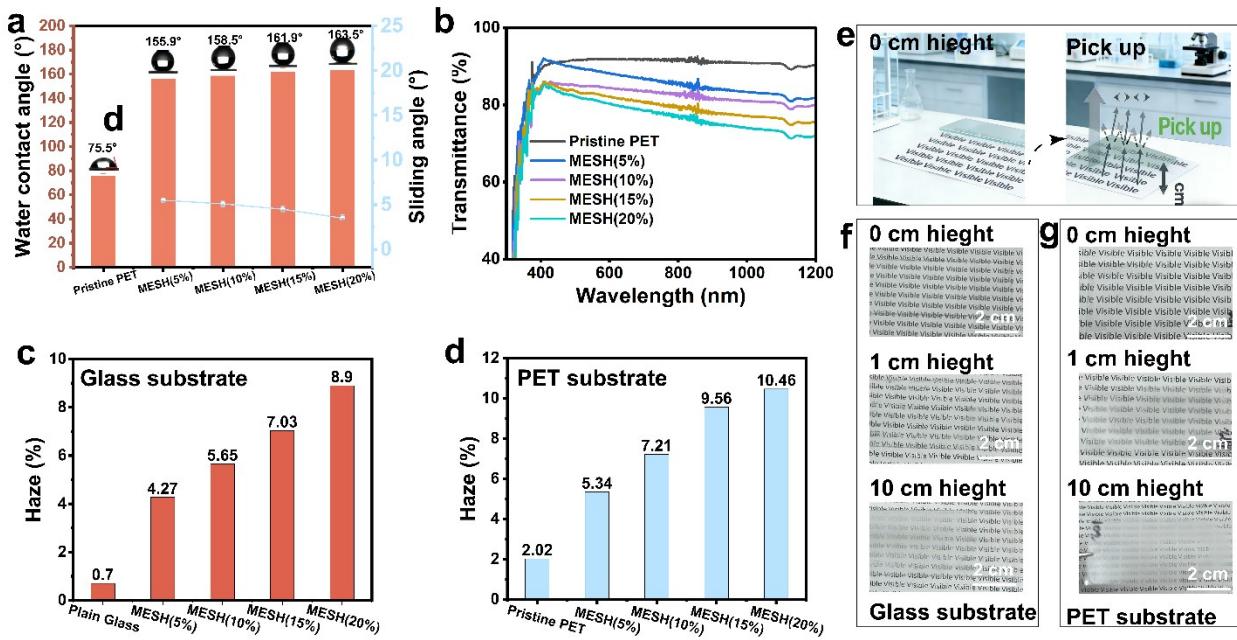
144 Here, ρ is water density, C is sound velocity, v is impact velocity

$$P_c \approx \frac{2\gamma r \sin^2\left(\frac{\theta_{adv}}{2}\right)}{d^2} \quad (2)$$

145

146 Where γ is surface tension, r is particle radius, d is spacing between protrusions, and θ_{adv} is the
147 advancing contact angle.

148 The equations show that reducing the spacing d between surface features markedly increases P_c ,
149 meaning that tightly spaced micro–nano structures are more resistant to impalement.¹


150

151

152 Figure S4. (a) Dynamic water jet bouncing off the MESH coating. (b) Time-dependent evolution of WCA and
153 SA during continuous high-pressure jetting. (c) Microscopic image of the surface after jet impalement

154

155

156 Figure S5. (a) Wettability of MESH coatings on PET substrate at varying filler ratios, showing WCA and SA.
 157 (b) Optical transmittance spectra of pristine PET and MESH-coated PET films. (c-d) Haze values at 550 nm for
 158 MESH coatings on glass (c) and PET (d) substrates (e) Schematic illustration of the measurement configuration
 159 for transmittance and haze using a paper sheet as background. (f-g) Photographs showing text visibility through
 160 MESH-coated glass (f) and PET (g) placed directly on the paper sheet (0 cm) and at distances of 1 cm and 10 cm,
 161 demonstrating the balance between high transmittance and controlled haze.

162

163 Photothermal Conversion Efficiency

164 To evaluate the photothermal conversion efficiency (η) of the MXene–Cu²⁺ coating under
 165 simulated solar illumination, we adopted a modified energy balance approach analogous to the
 166 method used by Fan et al.² Since the system involves a solid coating on a glass substrate without
 167 phase transition, the stored energy is entirely sensible heat. The efficiency was calculated by
 168 comparing the thermal energy stored by the sample to the solar energy absorbed during
 169 illumination.

170

171

172

173 (1) Thermal energy stored by the coated substrate is define by:

174
$$Q_{\text{stored}} = m_{\text{eff}} \cdot C_{p,\text{eff}} \cdot (T_{\text{max}} - T_0) \quad (4)$$

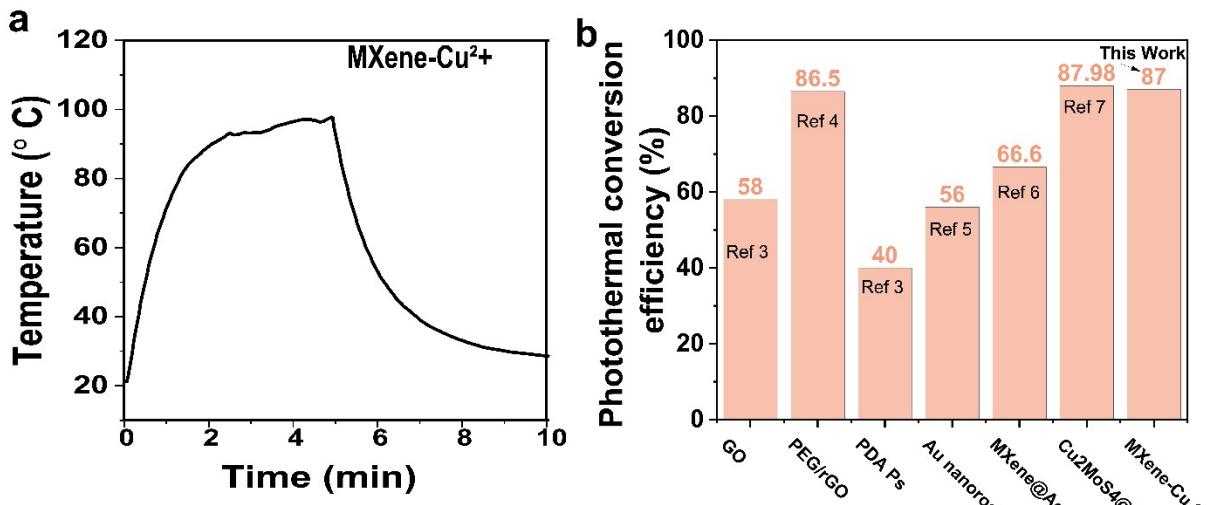
175 Where Q_{stored} is total sensible heat stored (J), m_{eff} the effective mass (g) and $C_{p,\text{eff}}$ specific heat
176 capacity of the sample ($J \cdot g^{-1} \cdot K^{-1}$), T_{max} maximum temperature during irradiation ($^{\circ}C$),
177 and T_0 initial temperature ($^{\circ}C$)

178 The effective mass is given by:

179
$$m_{\text{eff}} = \rho \cdot A \cdot d \quad (5)$$

180 2) Solar energy received and absorbed by the coating define by:

181
$$Q_r = P \cdot S \cdot t_{\text{heat}} \quad (6)$$

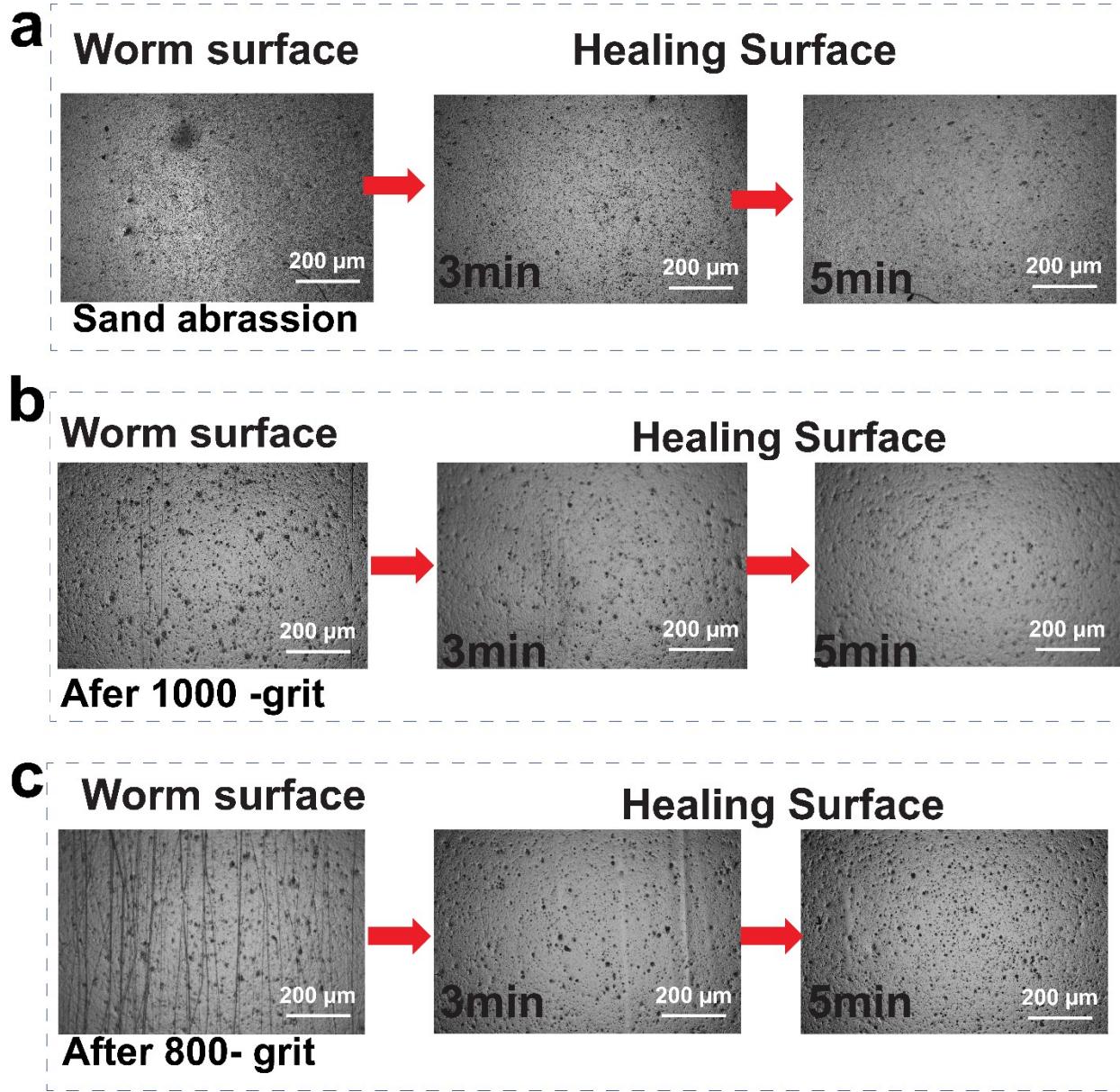

182 Where Q_r is total incident solar energy (J), P the solar intensity ($W \cdot cm^{-2}$), S is illuminated area
183 (cm^2), and t_{heat} irradiation time to reach $T_{\text{max}}(s)$

184 To account for the fraction of light absorbed by the MXene- Cu^2^+ layer, the absorbance at λ
185 (A_{λ}) was used:

186
$$Q_{r,abs} = Q_r \cdot (1 - 10^{-A_{\lambda}}) \quad (7)$$

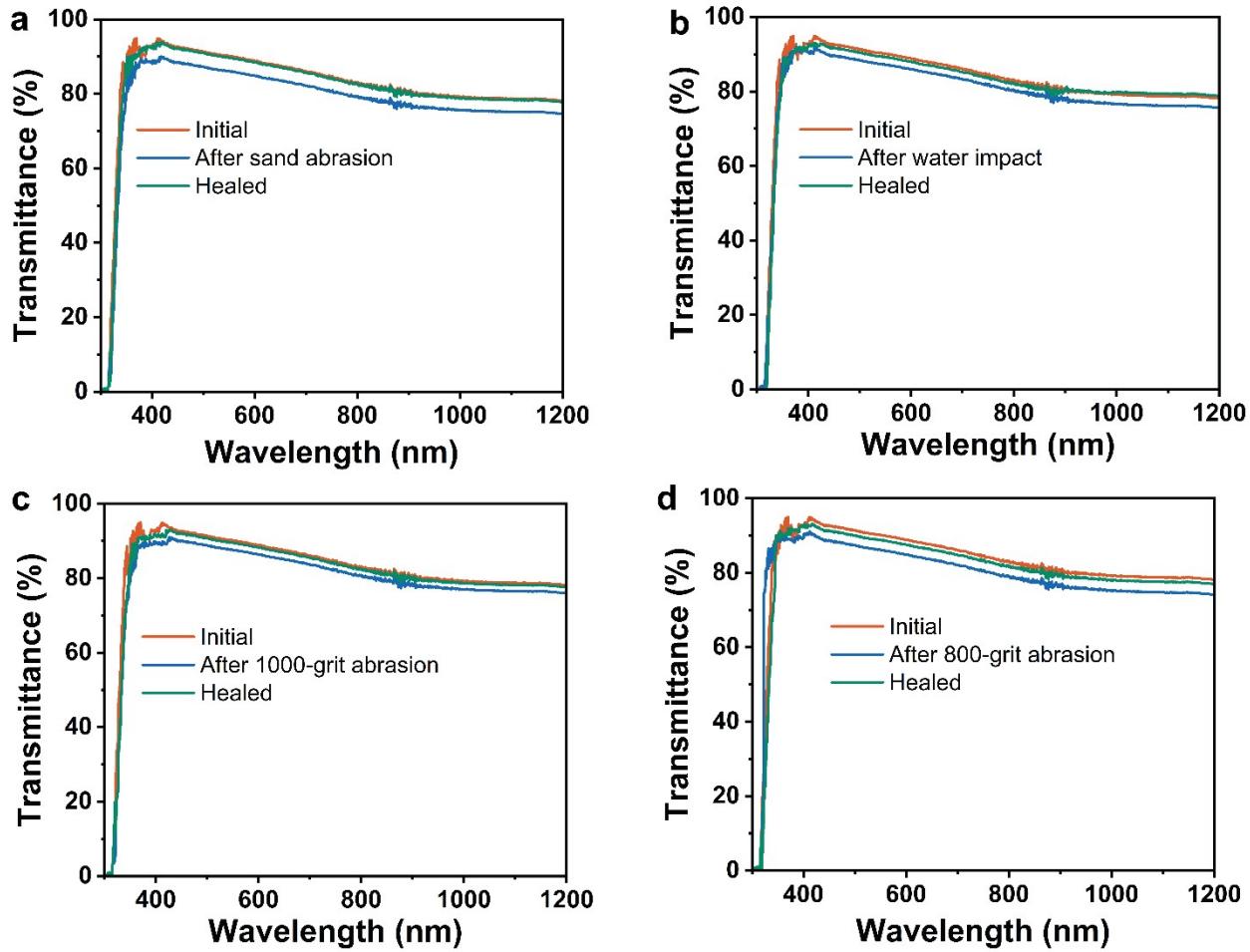
187 (3) Photothermal conversion efficiency is calculated by:

188
$$\eta = \frac{Q_{\text{stored}}}{Q_{r,abs}} = \frac{m_{\text{eff}} \cdot C_{p,\text{eff}} \cdot (T_{\text{max}} - T_0)}{P \cdot S \cdot t_{\text{heat}} \cdot (1 - 10^{-A_{\lambda}})} \quad (8)$$

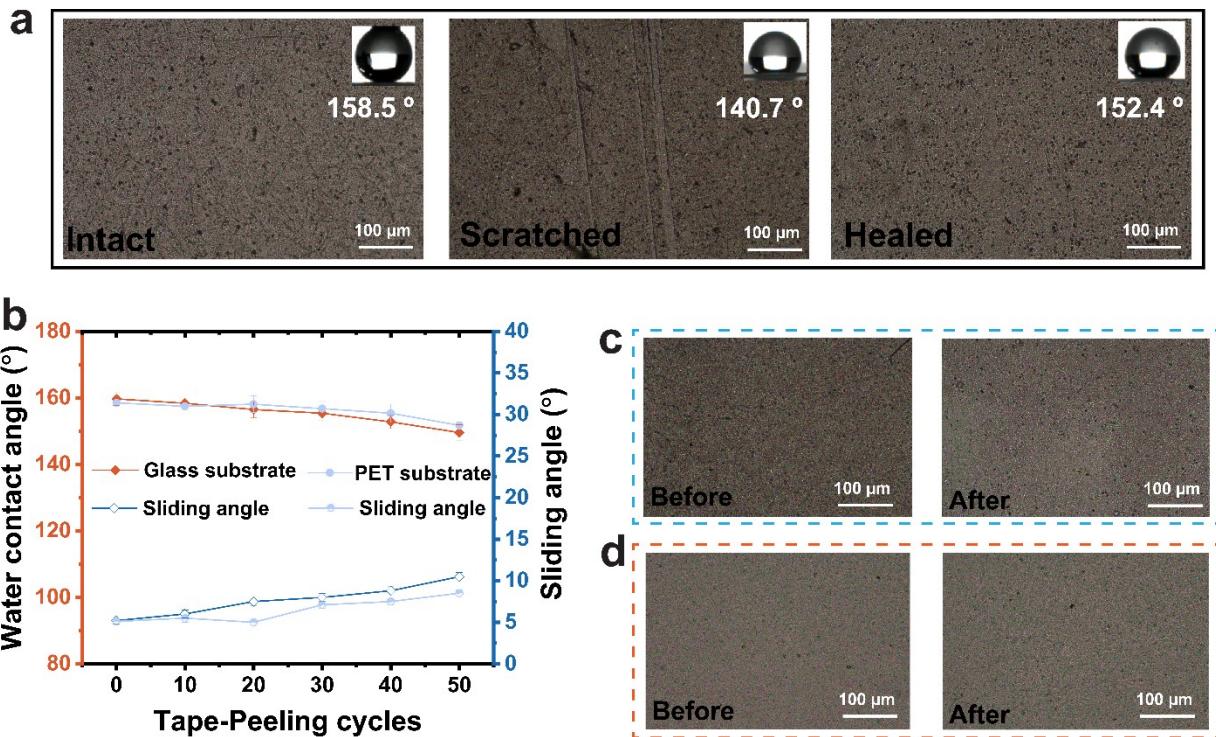


189

190 **Figure S6.** (a) Temperature–time profile of MXene–Cu²⁺ under simulated solar irradiation (1 sun, 5 min heating
 191 and 5 min cooling). (b) Comparison of photothermal conversion efficiency (η) for MXene–Cu²⁺ and benchmark
 192 materials including GO,³ PEG/rGO,⁴ PDA Ps,⁵ Au nanorods,³ MXene@AgAu@PDA,⁶ and Cu₂MoS₄@MXene.⁷

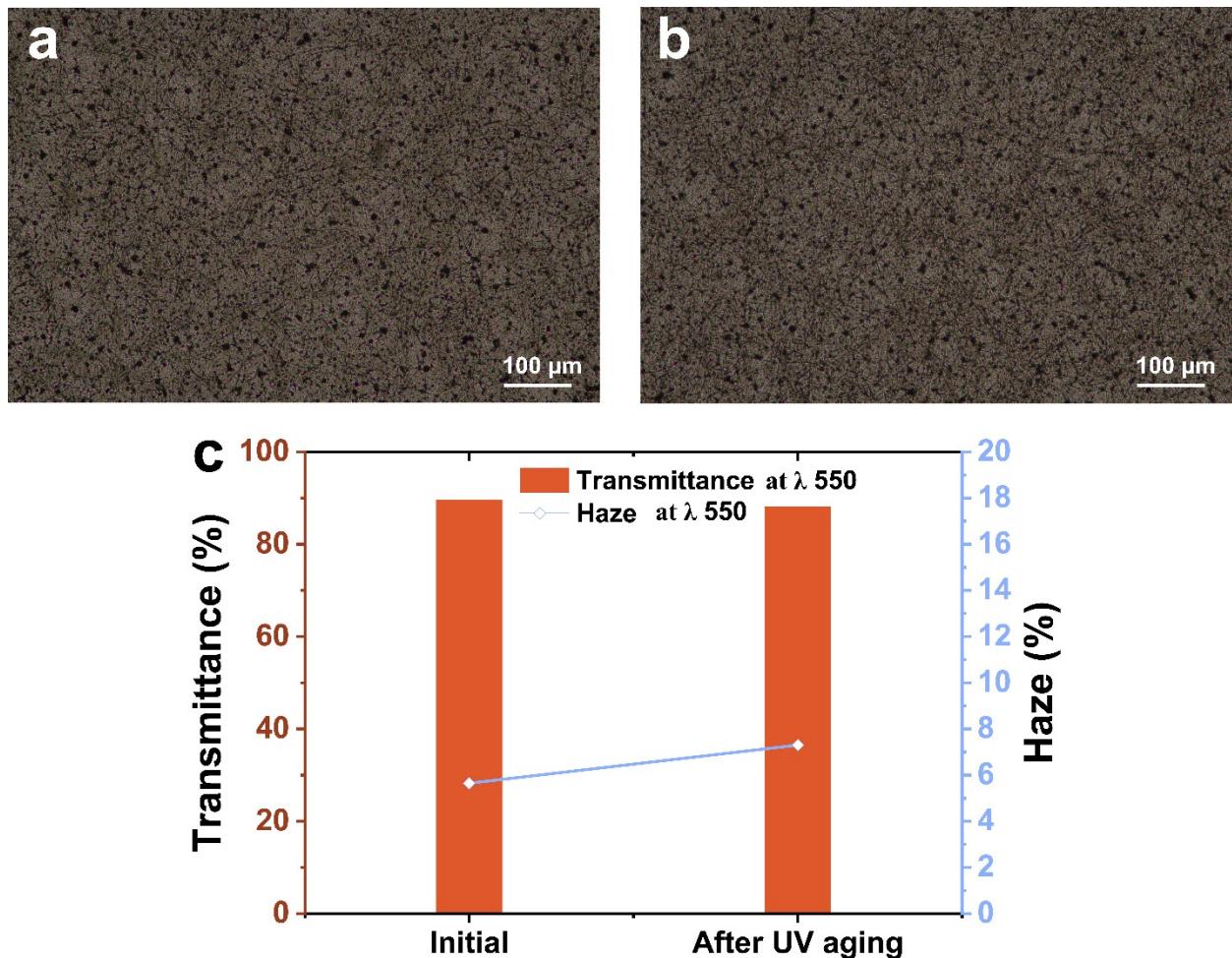

193

194


195

196 **Figure S7.** a-c) post-impact healed micrograph images of MESH coating. Sand falling cycle (a), Sandpaper
 197 abrasion cycle under 1000 grit (b) and 800 grit(c)

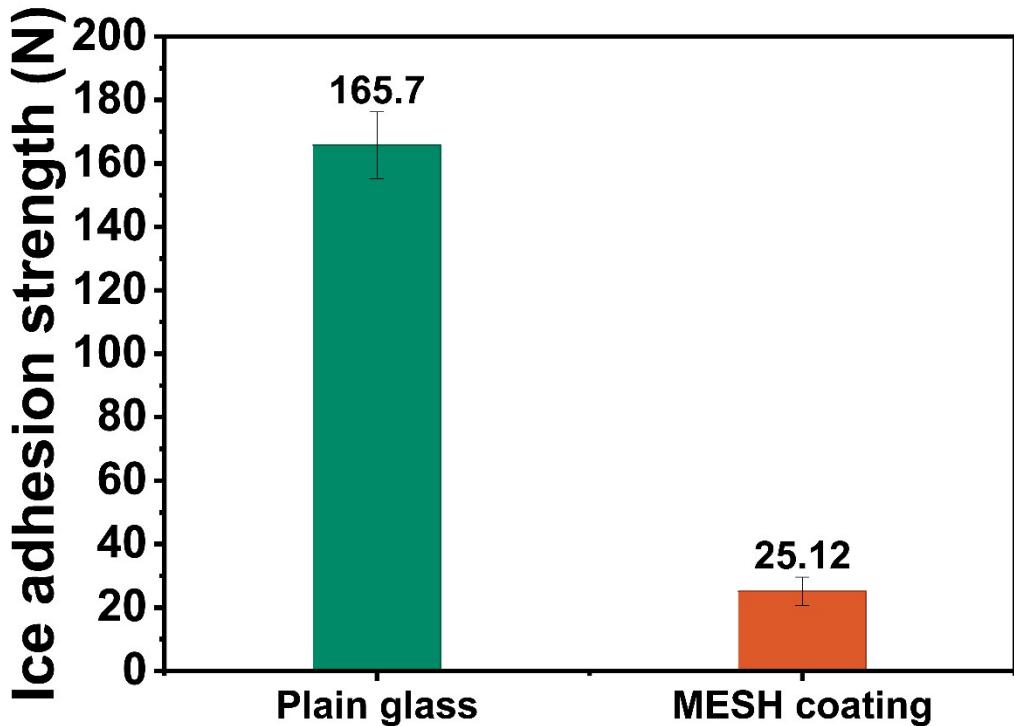
198


199 **Figure S8.** Optical transmittance spectra of the MESH coating at the initial state and after post-mechanical
 200 testing and healing, including (a) sand falling test, (b) water impact test, and sandpaper abrasion tests on (c)
 201 1000-grit and (d) 800-grit surfaces, respectively.

202

203 **Figure S9.** a. Microscopic images of MESH- coated PET substrate at initial, and after scratched and healing
 204 process under 1 sun (5 min) (inset is corresponding WCA). b- Relationship between WCA and SA of MESH
 205 coating on Glass and PET substrate as a function tape peeling cycles. c- d Microscopic images of MESH coating
 206 before and after tape-peeling test on PET and glass substrates, respectively.

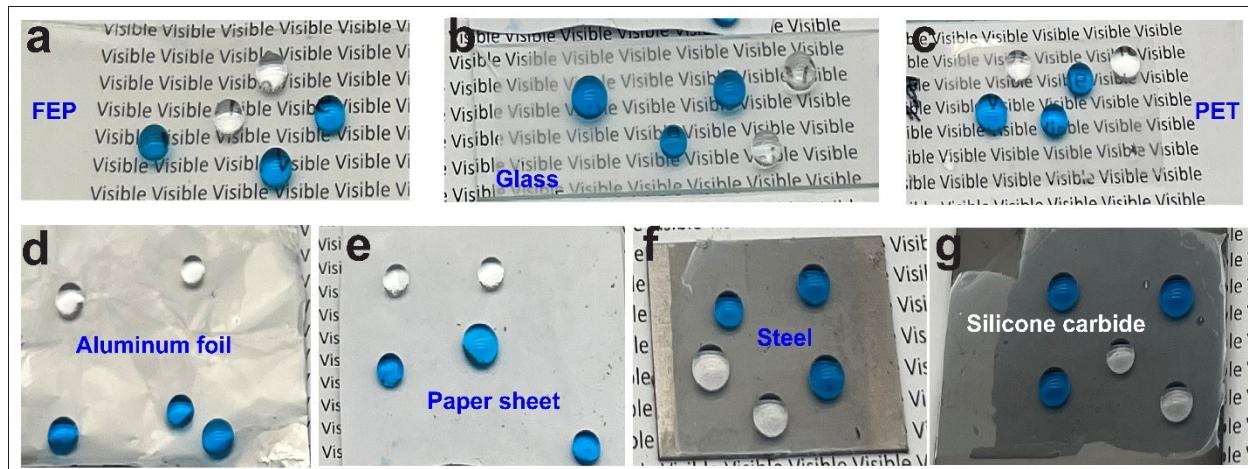
207



208

209 **Figure S10.** Micrograph images of MESH coating before and after UV aging test. Transmittance and haze value
 210 of MESH coating before and after UV aging test.

211


212

213

214 **Figure S11.** Ice adhesion strength of plain glass and the MESH coating.

215

216

217 **Figure S12.** MESH coatings applied to various substrates, including (a) fluorinated ethylene propylene (FEP),
 218 (b) glass, (c) polyethylene terephthalate (PET), (d) Aluminum foil, (e) Paper-sheet, (f) Steel, and (g) Silicon
 219 carbide, each shown with its corresponding water droplet (dye methyl blue and none-dye water).

220

221

222 **Table S1. Comparative summary of superhydrophobic self-healing coatings from this work and**
223 **recent studies.**

224

Material	Method	Chemical self-healing		Physical self-healing		Functionality		Ref
		Properties	Scenarios	Properties	Scenarios	Self-cleaning	Anti-icing	
DDA-PDA@CNTs	One-pot	O ₂ plasma-repair	150°C, 10 min	Surface structure repair	89.9°C, 10 min	Yes	Yes	8
BPDI/SiO ₂	Dual cross-linking, spray	plasma etching	Spontaneous room temp	Surface reorganization	UV	Yes	Not stated	9
PU/SiO ₂ @HD-POS	Spray-coating, spray	HD-POS migration	room temp			Yes	Yes	10
Al/ZnO-P.I.Z-FAS@PDA	spray	chemical repair	40 min , room temp	scratch repair	5 min , 80°C (photothermal)	Yes	Yes	11
POEG/Fluorinated carbon black	Two-step spray			Surface structure repair	Heat treatment	Not stated	Yes	12
DTMS@PDA@SiO ₂ @CNTs/epoxy	One-step spray	chemical corrosion	NIR irradiation	scratch repair		Yes	Not stated	13
ZIF-7@ZnG@PFDS/epoxy	MOF-based, spray	NaCl				Yes	Yes	14
PDA-Cu ²⁺ -GO/ODA/PDMS	Layered, chelation, spray	O ₂ plasma	1-sun irradiation	Scratch repair	1-sun irradiation	Yes	Not stated	15
PU/ZnO@PDA-SA	disulfide-bonded			Scratch repair	70°C, 1h	Yes		16
ZnO@MPDA/silicone latex	Blending, stimuli-responsive	controlled release	UV/NIR/acid/base			Yes	Not stated	17
PEG/Fe ₃ O ₄ -SA/polyamide-epoxy	Hydrogen bonding		4 h room temp, 10 min oven			Yes	Yes	18
CNT@SiO ₂ /epoxy	Spray	48 h alkali cycles	4 h room temperature, 10 min 80 °C oven			Not stated	Yes	19
PDMS-IPDI-TFB/PDA NPs	Spray		Sunlight, room temp			Yes	Yes	20
MXene-Cu ²⁺ /PCL/PVDF-TrFE/PDMS	Electrospinning assisted coating	O ₂ plasma	1-sun, 5 min	Scratch repair	1-sun, 5 min	Yes	Yes	This work

225

226

227

228

229

230 **References**

231 1. H. Teisala, F. Geyer, J. Haapanen, P. Juuti, J. M. Mäkelä, D. Vollmer and H. J. Butt, *Adv Mater*, 2018, **30**, 1706529.

233 2. R. Fan, N. Zheng and Z. Sun, *Sol. Energy Mater. Sol. Cells*, 2022, **237**, 111572.

234 3. O. A. Savchuk, J. Carvajal, J. Massons, M. Aguiló and F. Díaz, *Carbon*, 2016, **103**, 134-235 141.

236 4. W. Luo, M. Zou, L. Luo, Y. Ma, W. Chen, X. Hu, Q. Li and X. Jiang, *J. Energy Storage*, 237 2024, **78**, 109950.

238 5. Y. Li and D. Wang, *Chin. J. Pharm*, 2021, **19**, 81-86.

239 6. G. Liu, H. Wang, C. Xu, Q. Fang, H. Wang, Y. Xu, M. Sang, S. Xuan and L. Hao, *J. Mater. Chem. B*, 2023, **11**, 10678-10691.

241 7. L. Li, J. Zhang, Y. Lin, Y. Zhang, S. Li, Y. Liu, Y. Zhang, L. Shi, S. Yuan and L. Guo, 242 *Front. Bioeng. Biotechnol.*, 2022, **10**, 902312.

243 8. Y. Li, H. Li, J. Wu, X. Yang, X. Jia, J. Yang, D. Shao, L. Feng, S. Wang and H. S. Song, 244 *Appl. Surf. Sci*, 2022, **600**, 154177.

245 9. J. Tao, L. Dong, Y. Wu, X. Liu, J. Xie, H. Wu and Q. Ran, *Compos. Pt. B-Eng*, 2024, 246 **273**, 111245.

247 10. Y. Li, B. Li, X. Zhao, N. Tian, J. Zhang, *ACS Appl. Mater. Interfaces*, 2018, **10**, 39391-248 39399.

249 11. T. Zhang, J. Deng and L.-Z. Zhang, *Prog. Org. Coat*, 2023, **180**, 107569.

250 12. K. Li, J. Xiang, J. Zhou, X. Su, H. Xie, S. Lin, Z. Xiao, W. Huang, C. Zhao and H. Chen, 251 *Prog. Org. Coat*, 2023, **177**, 107415.

252 13. J. Liu, W. Huang, G. Cui, X. Xing and J. Liu, *Process Saf. Environ. Prot.*, 2025, **195**, 253 106759.

254 14. G. Zhu, J. Su, C. Yin, H. Li, Y. Yao, L. Zhang, X. Yao, X. Zhang and F.-Q. Liu, *Appl. Surf. Sci.*, 2023, **622**, 156907.

256 15. C. Lee, S. Ji, S. Oh, S. Park, Y. Jung, J. Lee and H. Lim, *Nanoscale Adv.*, 2022, **4**, 761-257 771.

258 16. C. Li, P. Wang, D. Zhang and S. Wang, *ACS Appl. Mater. Interfaces*, 2022, **14**, 45988-259 46000.

260 17. X. Ni, C. Li, Y. Lei, Y. Shao, Y. Zhu and B. You, *ACS Appl. Mater. Interfaces*, 2021, **13**, 261 57864-57879.

262 18. X. Wang, L. Tang, S. Fan and W. Fan, *Nanomaterials*, 2024, **14**, 1981.

263 19. Z. He, H. Xu, Y. Zhou and Y. Tan, *J Mater Res Technol*, 2024, **30**, 2609-2619.

264 20. Y. Wu, L. Dong, X. Shu, Y. Zhang and Q. Ran, *ACS Appl. Mater. Interfaces*, 2025, **17**,
265 18852-18868.

266

267