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The relationship € and € can be expressed as formula S1 and S2 for further

analyzed to clarify the dielectric loss mechanism:

(€ - e)" + ()" = (&, &)’ s1)
" " " L o
€ :ep+eC:—2 2wr+—
1+ w’t wE (S2)

Among them, €s is the relative dielectric constant at static state, €w is the relative
dielectric constant at high frequency, €0 js the vacuum dielectric constant, @ is the
angular frequency, 7 is the relaxation time, and 9 is the conductivity. Among, € " can
be divided into the conduction loss (SC”) and polarization relaxation loss (SP”),
respectively.

The reflection loss (RL) is calculated by transmission line theory according to

formula (S3) and formula (S4):
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In the formula, Zo represents the free space impedance, Zin denotes the input
characteristic impedance, f is the microwave frequency, @ refers to the thickness of
absorber and € is the speed of light. When RL<—10 dB, it means that more than 90 %
of the electromagnetic waves are absorbed by the absorber.

The quarter-wavelength matching theory can be described as formula S5:
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(S5)
In the above formula, tm represents the matching thickness when reaching RL .,

and fm represents the corresponding frequency.
The attenuation constants (@) and impedance matching (Z) can be calculated by

formulas (S6) and (S7):
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P Joe
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The specific capacitance (C,,) was calculated from the GCD results using the

following formula S8:

C,. = (IAt)/(mAV)

8)

Among them, I and At represent the test current (A) and discharge time (s), ™

and AV represent the mass of active material (g) and voltage window (V), respectively.

The capacitance control and diffusion control ratios can be quantitatively
calculated by the following formula (S9):

i(v)=kv+k, (S9)
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Where i, V, kl, and k2, represent the output current, scan rate, and two constants,

respectively.
Energy density (E, Wh/kg) and power density (P, W/kg) were calculated by

formulas (S10) and (S11):

CAV
7.2

(S10)

E
p =3600—
At (S11)

where C is specific capacitance (E/g), AV is the operating potential window (V)

and At is discharge time (s).

Table S1. The microwave absorption properties of TMDs-based absorbing materials reported in

the literature were compared.

Thickness RLin EAB Filler Loading
Samples References
(mm) (dB) (GHz) (Wt%)

1T/2H-WS»/RGO-15 2.60 -45.69 7.68 5 This work

1T/2H-WSe,/RGO-4 2.60 -35.26 7.04 5 This work
MoSe,@rGO hybrids 2.32 -68.70 5.04 60 [1]
MoSe,@RGO 7.56 -22.8 3.86 40 [2]
1T@2H-MoS,/RGO 2.50 -66.77 4.00 30 [3]
RGO/MoSe, VDWH 6.29 -65.34 4.20 30 [4]
Carbon nanofibers/MoSe, 3.06 -53.33 4.04 20 [5]
Fe;04/Mo8S,/rGO/Ti;C, Ty 3.61 -66.92 6.08 5 [6]
WS,—rGO 2.70 -41.5 3.50 40 [7]
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2H/1T-MoSe,@graphene

2.10 -52.3

6.40

40 [8]
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Fig. S1. (a, b) XRD spectrum of 1T/2H-WS, and 1T/2H-WSe,.
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Fig. S2. (a, b) Raman images of 1T/2H-WS; and 1T/2H-WSe,.
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Fig. S3. SEM images of (a, b)1T/2H-WS; and (c, d) 1 T/2H-WSe,.
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Fig. S4. The XPS survey spectra of (a) 1T/2H-WS,/RGO and (b) 1T/2H-WSe,/RGO, the high-
resolution XPS of W 4f in (¢) 1T/2H-WS, and (d) 1T/2H-WSe,, the high-resolution XPS of (e) S
2p in 1T/2H-WS; and (f) Se 3d in 1T/2H-WSe,.
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Fig. S5. Dielectric parameters of 1T/2H-WS, and 1T/2H-WSe; in the frequency range of 2-18
GHz: (a, d) £,(b, ¢) €, and (c, ) 11 O,
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Fig. S6. The electromagnetic wave absorption properties of 2D and 3D RL curves plots of (a, b)

1T/2H-WS, and (c, d) 1T/2H-WSe;.
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Fig. S7. The RL,,;;, value and the quarter-wavelength matching of (a-c) 1T/2H-WS,/RGO and (d-
f)1T/2H-WSe,/RGO.
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Fig. S9. CV curves, GCD curves, and specific capacitance at different current densities calculated
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Fig. S10. (a, b) Voltage windows, (c, d) CV curves, and (e, f) GCD curves of assembled
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