

1 A bionic stem-shaped copper-doped aniline-pyrrole copolymer composite photothermal 2 sponge evaporator for seawater desalination and sewage treatment

3 Yongjie Lao^a, Yusheng Wang^a, Qiao Zhang*^a, Feipeng Du^a, ChakYin Tang^b, ChiPong Tsui
4^b, Yunfei Zhang*^a

5 ^a School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan
6 430205, China

7 ^b Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University,
8 Hung Hom, Hong Kong, People's Republic of China

9 *Corresponding Author (s): booyou@163.com (Q. Zhang); zyf3006@126.com (Y. Zhang)

10 Calculation of the evaporation rate and the efficiency

11 The evaporation rate (\dot{m}) and energy conversion efficiency (η) are calculated using equations
12 (1-4) as detailed below ^{1,2}:

17 In formula (1-4): m represents the water mass loss (g) in the evaporator; A represents the area
18 of light that the evaporator is exposed to (m^{-2}); t represents the duration of evaporation (h); m

19 is the evaporation rate ($\text{kg m}^{-2} \text{ h}^{-1}$). ΔH_{vap} represents the enthalpy of evaporation of pure

water at 2257 J g^{-1} , and m_0 represents the dark evaporation of pure water. ΔH_{equ} is the

21 equivalent enthalpy of evaporation (J g^{-1}) of water in the evaporator, and m_g is the dark

22 evaporation of water in the evaporator. U_{in} is an energy input from the outside. λ_{lv} is latent

23 heat [equivalent to the equivalent enthalpy of evaporation ΔH_{equ} in (2)]; $C_p(T_1 - T_0)$ is the

24 sensible heat in the evaporation system, where C_p is the specific heat capacity of water, T_1 is

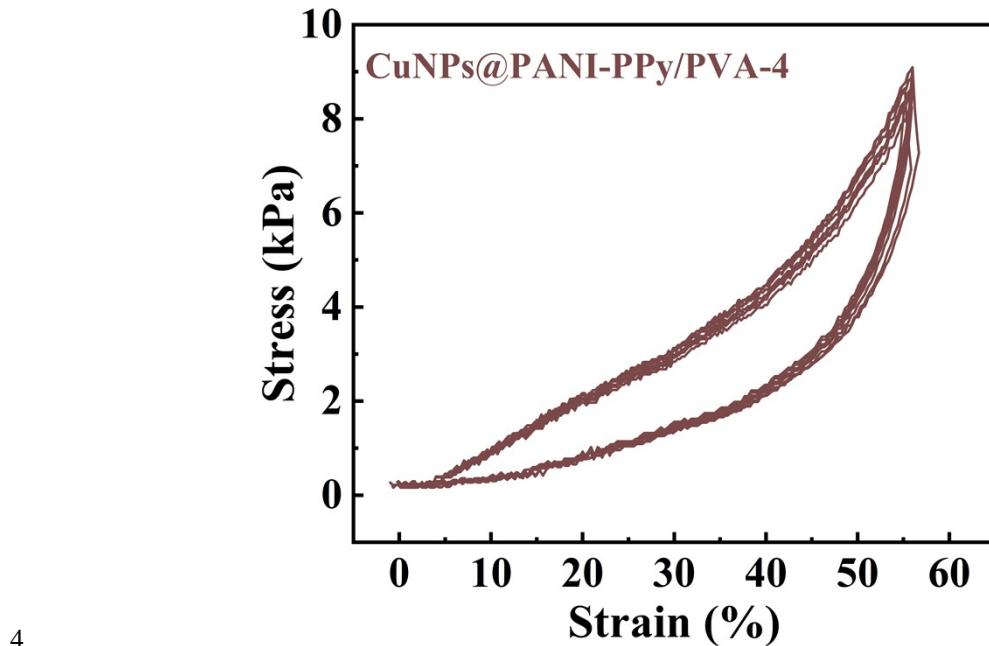
25. the steady-state temperature of the material, T_0 is the initial temperature of the material, and

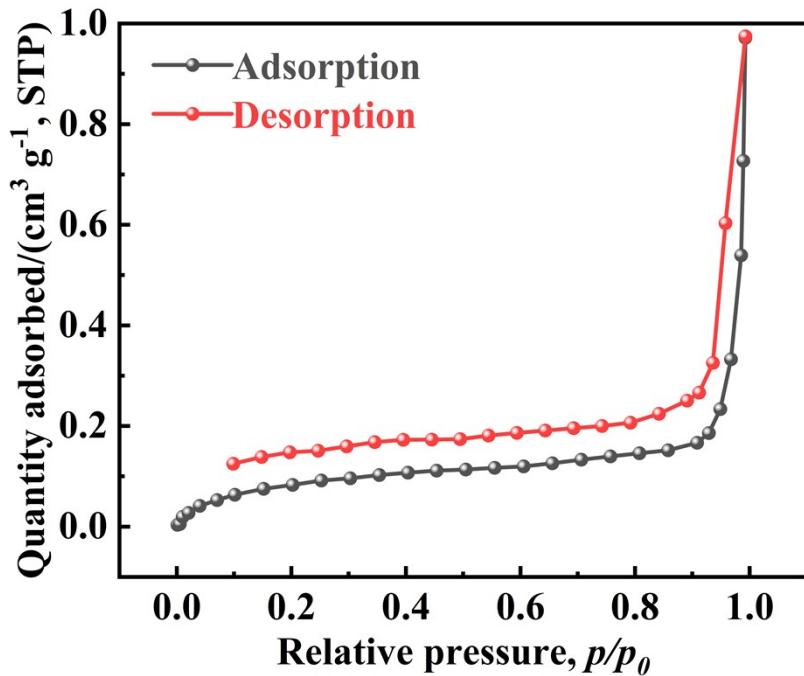
1 h_{lv} is the enthalpy of phase transition in evaporation (J g^{-1}). η represents the evaporation
 2 efficiency of water bodies; q is the simulated solar intensity of vertical irradiation (kW m^{-2}).
 3 The evaporation rates of each sample shown in **Table S1** are calculated using formula (1)

4 **Table S1** The evaporation rates of the prepared photothermal sponges

Photothermal sponges	Evaporation rate ($\text{kg m}^{-2} \text{ h}^{-1}$)
PVA	0.75
PANI/PVA	2.04
PPy/PVA	2.28
PANI-PPy/PVA-1	2.45
PANI-PPy/PVA-2	2.53
PANI-PPy/PVA-3	2.58
PANI-PPy/PVA-4	2.18
PANI-PPy/PVA-5	2.56
PANI-PPy/PVA-6	2.60
CuNPs@ PANI-PPy/PVA-1	3.01
CuNPs@ PANI-PPy/PVA-2	3.24
CuNPs@ PANI-PPy/PVA-3	3.25
CuNPs@ PANI-PPy/PVA-4	3.84
CuNPs@ PANI-PPy/PVA-5	3.35

5


6 **Physical properties of CuNPs@PANI-PPy/PVA-4**

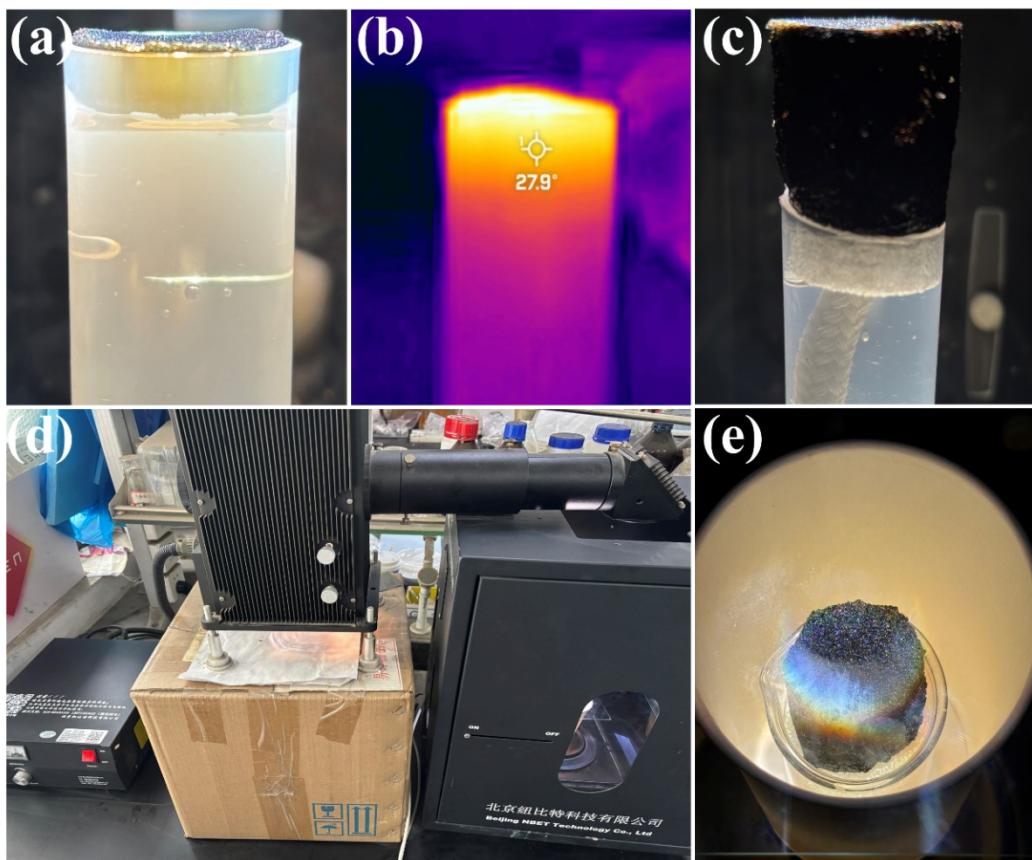

7 **Fig. S1** Compression and recovery of the CuNPs@PANI-PPy/PVA-4.

8 As shown in **Fig. S1**, the prepared CuNPs@PANI-PPy/PVA-4 is a dark green cylinder.
 9 Before compression, the height of the sponge is approximately 27 mm. After loading a 500 g

1 weight, the sponge is significantly deformed. The CuNPs@PANI-PPy/PVA-4 sponge almost
2 recovers the shape and height after unloading the weight, indicating the CuNPs@PANI-
3 PPy/PVA-4 has good compression deformation and recovery performance.

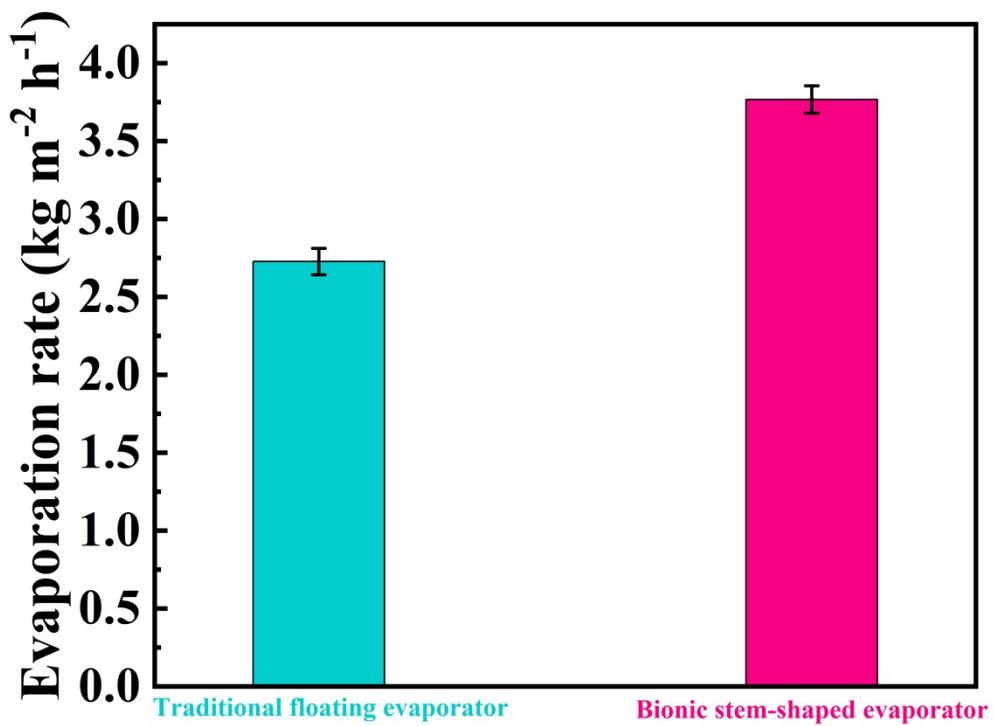
4
5 **Fig. S2** 10 cycles compression recovery test of CuNPs@PANI-PPy/PVA-4 at 55% strain.
6 Furthermore, 10 cycles of compression recovery test of CuNPs@PANI-PPy/PVA-4 are
7 conducted at 55% strain. As shown in **Fig. S2**, the stress-strain curves of the samples during
8 the cycling compression recovery test fit well together, demonstrating excellent compression
9 recovery properties. Therefore, the CuNPs@PANI-PPy/PVA-4 sponge prepared has loose
10 structure and low density characteristics.

Fig. S3 Nitrogen adsorption desorption isotherms of CuNPs@PANI-PPy/PVA-4.

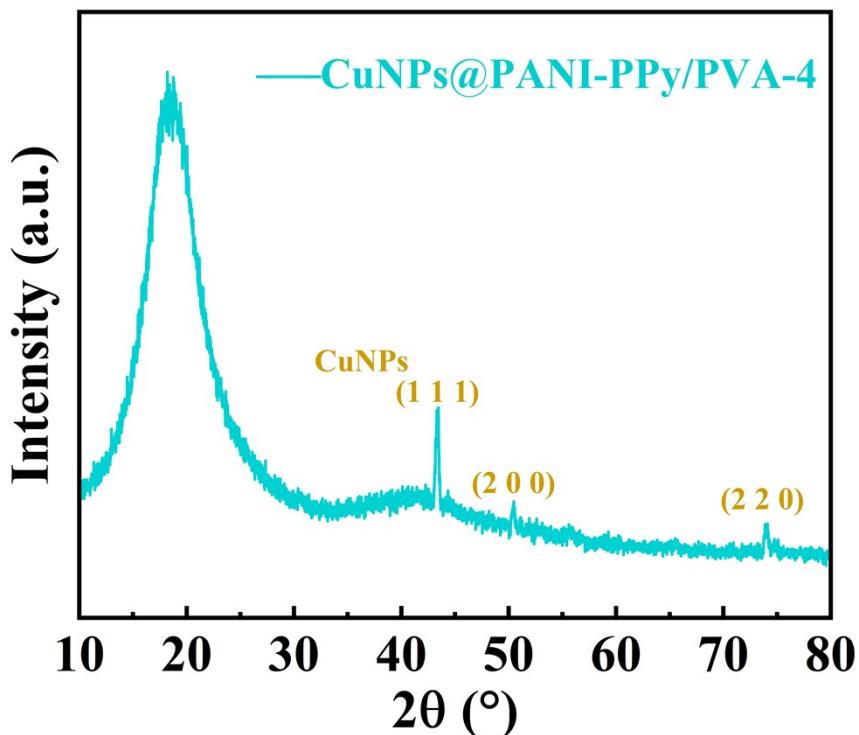

3 Nitrogen desorption and adsorption test is conducted to characterize the porous structure of
4 CuNPs@PANI-PPy/PVA-4. In **Fig. S3**, the sponge demonstrates a type IV isothermal
5 adsorption curve, and its adsorption-desorption isotherms do not overlap, forming H1 type
6 hysteresis loop. The average pore size of the sponge is about 9.43 nm calculated by Barrett-
7 Joyner-Halenda (BJH) method. Therefore, the prepared sponge shows a mesoporous structure.
8 In addition, the specific surface area is about $1.68 \text{ m}^2 \text{ g}^{-1}$ calculated by BET method. The
9 saturated adsorption platform existing in the curve reflects that the pore size of
10 CuNPs@PANI-PPy/PVA-4 is relatively uniform, which is conducive to water transport and
11 guarantee insufficient water supply during evaporation.

12 Seawater desalination test

As shown in **Fig. S4**, the purification effect of the simulated brine was evaluated by testing the resistance of the purified water with a digital multimeter. The resistance of the water collected by CuNPs@PANI-PPy/PVA-4 photothermal evaporation experiment was 135.88 k Ω , which was more than two orders of magnitude greater than the initially simulated real seawater (2.15 k Ω), and exceeded the normal value of the drinking water (30.47 k Ω). Therefore, the CuNPs@PANI-PPy/PVA-4 demonstrates good seawater desalination effect.

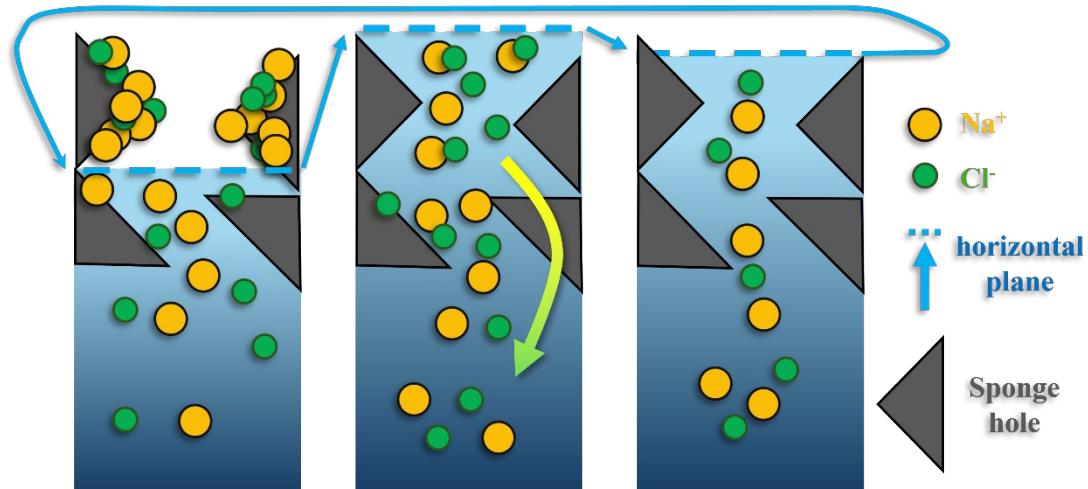

2 Fig. S4 The resistance of various water samples tested by a digital tester

4 Fig. S5 (a) Digital photo of the traditional floating solar evaporation device, (b) traditional
5 floating solar evaporation device infrared digital photograph, (c) digital photo of a biomimetic
6 stem-shaped solar evaporation device, (d) digital photo of the solar xenon lamp simulator, (e)
7 photo of indoor water collection and purification device


8 As shown in **Figs. S5(a, b)**, the traditional floating solar evaporation system directly
9 contacts the water surface, resulting in significant heat loss to the underlying water body
10 during the evaporation process. As shown in **Fig. S5(c)**, the biomimetic stem-shaped solar

1 evaporation device has a piece of polystyrene foam between the bottom of the
2 CuNPs@PANI-PPy/PVA-4 and the water source below, which can effectively isolate the heat
3 in the CuNPs@PANI-PPy/PVA-4 from the water below. As the solar evaporation process
4 progresses, the cotton strips at the bottom of the CuNPs@PANI-PPy/PVA-4 can continuously
5 supply water to the CuNPs@PANI-PPy/PVA-4, ensuring that the CuNPs@PANI-PPy/PVA-4
6 has sufficient water supply during the evaporation process. As shown in **Fig. S5(d)**, it is the
7 solar xenon lamp simulator. As shown in **Fig. S5(e)**, CuNPs@PANI-PPy/PVA-4 was used for
8 a simulated seawater desalination test in an indoor environment, and the process of collecting
9 the purified water was carried out.

10
11 **Fig. S6** Comparison chart of evaporation rates of the CuNPs@PANI-PPy/PVA-4 under two
12 structural designs.


13 As shown in **Fig. S6**, the evaporation rate of the biomimetic stem-shaped evaporator is
14 superior to that of the traditional floating evaporator.

1
2 **Fig. S7** XRD spectra of the CuNPs@PANI-PPy/PVA-4 after the cyclic simulated seawater
3 experiment

4 In order to determine the long-term stability of copper nanoparticles under high salinity
5 and repeated evaporation conditions, we conducted XRD tests on the CuNPs@PANI-
6 PPy/PVA-4 after the cyclic simulation of seawater evaporation experiments. As shown in the
7 **Fig. S7**, the peaks of nano-copper still exist, indicating that it has certain long-term stability.

8 The PVA sponge has a porous structure, and the pores of the sponge enable the reverse
9 diffusion of salt through capillary action. As shown in **Fig. S8**, upon evaporation of water in
10 the upper sponge layer, salt residues remain in the pores; however, capillary action draws
11 seawater upward to re-dissolve the salt. Driven by the concentration gradient, high-salinity
12 seawater diffuses toward low-salinity regions, maintaining system salt balance. Subsequent
13 continuous evaporation sustains this cyclic dynamic equilibrium, preventing significant salt
14 accumulation in the sponge that would otherwise impair evaporation efficiency.

1

Fig. S8 Schematic of the Salt Back-Diffusion Mechanism

2

Table S2 Concentration of Cu²⁺ in purified water measured by ICP-MS.

Ions	Analogue seawater		Acid-base wastewater (mg L ⁻¹)	Evaporated water (mg L ⁻¹)
	(mg L ⁻¹)			
Cu ²⁺	--	--	--	--

4

5

6

7

Table S3 Detailed information about the outdoor simulation experiment of solar evaporation

Time	Solar flux (kW m ⁻²)	Temperature (°C)
11:00	907.7	19.1
12:00	844.8	20.3
13:00	901.7	21.2
14:00	897.4	21.6
15:00	662.8	21.1
16:00	33.0	19.8

9 References

10 1 X. Li, G. Ni, T. Cooper, N. Xu, J. Li, L. Zhou, X. Hu, B. Zhu, P. Yao and J. Zhu, *Joule*,
11 2019, **3**, 1798–1803.

12 2 T.A. Cooper, S.H. Zandavi, G.W. Ni, Y. Tsurimaki, Y. Huang, S.V. Boriskina and G. Chen,

- 1 Contactless steam generation and superheating under one sun illumination, *Nat. Commun.*,
- 2 2018, **9**, 5086.