

Electronic Supplementary Information (ESI)

Boosting photoelectrochemical performance of ZnIn_2S_4 photoanodes via antimony-induced defect and surface homojunction engineering

Yequan Xiao,^{‡a} Niu Wang,^{‡a} Ziyi Zhang,^a Yujie Zou,^a Bowen Li,^b Zeyu Fan,^d Ronghua Li,^d Yulong Qiao,^b Ting Xiao,^a Lihua Jiang,^a Haijiao Xie,^f Jingfu He,^c Xiaobo Chen,^a Yanbo Li,^d Changli Li,^{*c} Xinyu Tan^{*a, e}

^a *Hubei Provincial Engineering Research Center for Solar Energy High-value Utilization and Green Conversion, College of Materials Science and Engineering, China Three Gorges University Yichang, Hubei 443002, P. R. China.*

^b *College of Electrical Engineering & New Energy, China Three Gorges University Yichang, Hubei 443002, P. R. China.*

^c *School of Materials, Sun Yat-sen University, Shenzhen 518107, P. R. China*

^d *Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China.*

^e *School of New Energy, Jingchu University of Technology, Jingmen, Hubei, 448000, PR China*

^f *Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou, Zhejiang 310003, P. R. China.*

[‡] These authors contributed equally to this work.

* Email: lichli5@mail.sysu.edu.cn (C. Li); tanxin@ctgu.edu.cn (X. Tan).

Contents

Experimental Section.....	1
Fig. S1. Photographic image of fabricated photoanode.....	8
Fig. S2. Top-view SEM images for as-prepared ZnIn ₂ S ₄ (a), O-ZnIn ₂ S ₄ (b), and Sb:O-ZnIn ₂ S ₄ (c) nanosheet films	9
Fig. S3. SEM-EDS elemental mappings of as-prepared ZnIn ₂ S ₄ (a) and O-ZnIn ₂ S ₄ (b) samples.....	9
Fig. S4. (a-c) SEM-EDS elemental mappings analysis of as-prepared ZnIn ₂ S ₄ (a), O-ZnIn ₂ S ₄ (b), and Sb:O-ZnIn ₂ S ₄ (c) samples. (d) The corresponding atomic ratios of the three samples were obtained through EDS mapping analysis.	10
Fig. S5. STM-EDS line scan of elements (Zn, In, Sb, S, O) in the Sb:O-ZnIn ₂ S ₄ sample.	10
Fig. S6. Normalized Raman spectra of as-prepared ZnIn ₂ S ₄ , O-ZnIn ₂ S ₄ , and Sb:O-ZnIn ₂ S ₄ samples.....	11
Fig. S7. XPS survey spectra of as-prepared ZnIn ₂ S ₄ , O-ZnIn ₂ S ₄ , and Sb:O-ZnIn ₂ S ₄ samples.....	12
Fig. S8. XPS core-level spectra of C 1s (a), Zn 2p (b), and In 3d (c) for as-prepared ZnIn ₂ S ₄ , O-ZnIn ₂ S ₄ , and Sb:O-ZnIn ₂ S ₄ samples.	12
Fig. S9. Temperature-dependent HAXPES analysis of O-ZnIn ₂ S ₄ (a) and Sb:O-ZnIn ₂ S ₄ (b) after air annealing under identical conditions	13
Fig. S10. (a) Room temperature PL spectra for as-prepared ZnIn ₂ S ₄ , O-ZnIn ₂ S ₄ , and Sb:O-ZnIn ₂ S ₄ samples measured under 420 nm laser excitation. (b) Schematic illustration of the mechanisms involved in the PL emission related to defects in ZnIn ₂ S ₄	14
Fig. S11. TRPL decay curves of Sb:O-ZnIn ₂ S ₄ samples with different SbCl ₃ concentrations, recorded at about 690 nm under 420 nm laser excitation.....	15
Fig. S12. (a) Constructed monolayer ZnIn ₂ S ₄ supercell. (b) ZnIn ₂ S ₄ supercell containing In vacancies (termed as ZnIn _{2-x} S ₄). (c) ZnIn ₂ S ₄ supercell (termed as Sb-ZnIn _{2-x} S ₄) with partial substitution of In vacancies or In atoms by Sb.....	16

Fig. S13. (a) Simulated O-substituted $\text{ZnIn}_{2-x}\text{S}_4$ structures with one O atom replacing different equivalent S sites (denoted as $1\text{O-ZnIn}_{2-x}\text{S}_{4-y}$) and their corresponding formation energies (E_{form}). (b) Simulated Sb- and O-cosubstituted $\text{ZnIn}_{2-x}\text{S}_4$ structures with one O atom replacing different equivalent S sites (termed as $\text{Sb:1O-ZnIn}_{2-x}\text{S}_{4-y}$) and their corresponding E_{form}	17
Fig. S14. (a) Simulated $2\text{O-ZnIn}_{2-x}\text{S}_{4-y}$ structures and their corresponding E_{form} . (b) Simulated $\text{Sb:2O-ZnIn}_{2-x}\text{S}_{4-y}$ structures and their corresponding E_{form}	18
Fig. S15. (a) Simulated $3\text{O-ZnIn}_{2-x}\text{S}_{4-y}$ structures with three O substituting different equivalent S sites and their corresponding E_{form} . (b) Simulated $\text{Sb:3O-ZnIn}_{2-x}\text{S}_{4-y}$ structures and their corresponding E_{form} . (c) Simulated $\text{Sb:4O-ZnIn}_{2-x}\text{S}_{4-y}$ structures with four O atoms substituting different equivalent S sites and their corresponding E_{form}	19
Fig. S16. Relationship between E_{form} and the number of O substitutions for the most stable structures in the O-ZnIn ₂ S ₄ and Sb:O-ZnIn ₂ S ₄ systems.....	20
Fig. S17. Tauc plots of UV-vis absorption spectra for as-prepared ZnIn ₂ S ₄ , O-ZnIn ₂ S ₄ , and Sb:O-ZnIn ₂ S ₄ samples.....	21
Fig. S18. (a) First-order differential of the UPS spectra for as-prepared ZnIn ₂ S ₄ , O-ZnIn ₂ S ₄ , and Sb:O-ZnIn ₂ S ₄ samples. (b) UPS spectra from the low Sb concentration region in Sb:O-ZnIn ₂ S ₄ sample (denoted as Sb:O-ZnIn ₂ S ₄ (inside)), obtained by spin-coating with a 1 mM SbCl ₃ solution. (c) Valence band spectra of Sb:O-ZnIn ₂ S ₄ (inside) in the low binding energy region of the UPS spectra, used to determine the valence band position.....	22
Fig. S19. XPS depth profile of the core-level spectra for Zn 2p (a), In 3d (b), S 2p (c), and (O 1s + Sb 3d) (d) in the Sb:O-ZnIn ₂ S ₄ sample.....	23
Fig. S20. Fitted core-level spectra of Zn 2p (a), In 3d (b), S 2p (c), and (O1s + Sb 3d _{5/2}) (d) for the Sb:O-ZnIn ₂ S ₄ sample at different XPS depth etching times.....	24
Fig. S21. (a) $J-V$ curves of as-prepared ZnIn ₂ S ₄ (sample #3 in panel b), O-ZnIn ₂ S ₄ (sample #2 in panel c), and Sb:O-ZnIn ₂ S ₄ (sample #3 in panel d) photoanodes measured in 0.5M Na ₂ SO ₄ (pH 6.8) under chopped AM1.5G simulated sunlight (100 mW cm ⁻²) with a scan rate of 10 mV s ⁻¹ . (b-d) Reproducibility of the chopped	

<i>J-V</i> curves measured for five independently prepared electrodes for each sample type, including (b) as-prepared ZnIn_2S_4 , (c) $\text{O-ZnIn}_2\text{S}_4$, and (d) $\text{Sb:O-ZnIn}_2\text{S}_4$ photoanodes.	25
Fig. S22. <i>J-V</i> curves for $\text{Sb:O-ZnIn}_2\text{S}_4$ photoanodes with different Sb incorporation concentrations, measured in 0.5M Na_2SO_4 (pH 6.8) under continuous AM1.5G simulated sunlight (100 mW cm^{-2}) with a scan rate of 10 mV s^{-1}	26
Fig. S23. Annealing temperature and time dependence of the PEC performance of $\text{O-ZnIn}_2\text{S}_4$ and $\text{Sb:O-ZnIn}_2\text{S}_4$ photoanodes measured in 0.5 M Na_2SO_4 (pH 6.8) under AM 1.5G illumination (100 mW cm^{-2}). (a, b) <i>J-V</i> curves of photoanodes annealed at different temperatures. (c, d) <i>J-V</i> curves of photoanodes annealed for different durations.....	27
Fig. S26. Extended PEC stability tests of as-prepared ZnIn_2S_4 , $\text{O-ZnIn}_2\text{S}_4$, and $\text{Sb:O-ZnIn}_2\text{S}_4$ photoanodes measured in 0.5 M Na_2SO_4 electrolyte at 1.0 V vs. RHE. <i>J-T</i> curves were recorded under chopped (a) and continuous (b) AM 1.5G illumination for 60 min	30
Fig. S27. Top-view SEM images for as-prepared ZnIn_2S_4 (a, d), $\text{O-ZnIn}_2\text{S}_4$ (b, e), and $\text{Sb:O-ZnIn}_2\text{S}_4$ (c, f) samples before (a-c) and after (d-f) a 10 min PEC test.....	31
Fig. S29. Solar photocurrent spectra and integrated photocurrent curves for $\text{O-ZnIn}_2\text{S}_4$ and $\text{Sb:O-ZnIn}_2\text{S}_4$ photoanodes.	33
Fig. S30. Mott-Schottky plots of as-prepared ZnIn_2S_4 (a), $\text{O-ZnIn}_2\text{S}_4$ (b), and $\text{Sb:O-ZnIn}_2\text{S}_4$ (c) photoanodes, measured for three independently prepared samples in 0.5 M Na_2SO_4 electrolyte under dark conditions.....	34
Fig. S31. Mott-Schottky plots of $\text{Sb:O-ZnIn}_2\text{S}_4$ with varying Sb incorporation concentrations.	35
Fig. S32. PEIS for as-prepared ZnIn_2S_4 , $\text{O-ZnIn}_2\text{S}_4$, and $\text{Sb:O-ZnIn}_2\text{S}_4$ photoanodes, measured for three independently prepared samples in 0.5M Na_2SO_4 electrolyte under AM 1.5G simulated sunlight.....	36
Fig. S33. PEIS for $\text{Sb:O-ZnIn}_2\text{S}_4$ photoanodes with varying Sb incorporation concentrations measured in 0.5M Na_2SO_4 electrolyte under AM 1.5G simulated sunlight.....	37

Fig. S34. Absorbed solar photocurrent spectra and absorption photocurrent (J_{abs}) curves for O-ZnIn ₂ S ₄ and Sb:O-ZnIn ₂ S ₄ photoanodes.....	38
Fig. S35. Open circuit potential (OCP) decay profiles for as-prepared ZnIn ₂ S ₄ , O-ZnIn ₂ S ₄ , and Sb:O-ZnIn ₂ S ₄ photoanodes under illumination and in the dark.....	39
Fig. S36. (a-c) Cyclic voltammograms of as-prepared ZnIn ₂ S ₄ (a), O-ZnIn ₂ S ₄ (b), and Sb:O-ZnIn ₂ S ₄ (c) photoanodes recorded in 0.5 M Na ₂ SO ₄ solution at various scan rates. (d) Difference between the cathodic and anodic charging current densities at 0.10 V vs. RHE plotted as a function of scan rate for the three photoanodes	40
Fig. S37. (a) Dark J - V curves of as-prepared ZnIn ₂ S ₄ , O-ZnIn ₂ S ₄ , and Sb:O-ZnIn ₂ S ₄ photoanodes measured in 0.5M Na ₂ SO ₄ with a scan rate of 10 mV s ⁻¹ . (b) Corresponding Tafel plots.....	41
Table S1. Detailed HAXPES and XPS data analyzed using Thermo Fisher Scientific's Avantage software..	42
Table S2. Quantitative elemental compositions of the samples obtained from HAXPES and XPS data analysis.....	43
Table S3. Fitted parameters for the TRPL decay of different Sb:O-ZnIn ₂ S ₄ samples..	44
Table S5. Total energies, corresponding formation energies (E_{form}) and atomic ratios of the DFT-optimized structural models	45
Table S6. Bandgap and band positions of different ZnIn ₂ S ₄ samples determined by UPS spectra and UV-vis absorption spectra.	48
Table S7. PEC water oxidation performances of recently reported ZnIn ₂ S ₄ -based photoanodes (2014-2025).	49
Table S8. Fitted values of CPE parameters obtained from EIS measurements.	51

Experimental Section

1.1. Preparation of materials

ZnIn₂S₄ nanosheets were synthesized on FTO conductive glasses substrates via a facile hydrothermal method. Briefly, FTO glass (50×10 mm², $\leq 14 \Omega \text{ sq}^{-1}$) was sequentially ultrasonically cleaned in acetone, isopropanol, and deionized (DI) water for 15 min each. The cleaned substrates were then placed into a 100 mL Teflon-lined stainless-steel autoclave, tilted against the wall with the conductive side facing downward. The Teflon liner contained a precursor solution prepared by dissolving 0.0068 g of zinc chloride (ZnCl₂, Aladdin, 99.95%), 0.22 g of indium chloride tetrahydrate (InCl₃·4H₂O, Aladdin, 99.9%), and 0.30 g of thiourea (CH₄N₂S, Aladdin, 99%) in 50 mL of DI water under constant stirring for 10 min at room temperature. The sealed autoclave was heated at 170 °C for 12 h and naturally cooled to room temperature. The obtained ZnIn₂S₄ films on FTO substrate were rinsed with DI water and air-dried at room temperature, denoted as as-prepared ZnIn₂S₄.

To obtain oxygen-substituted ZnIn₂S₄ (O-ZnIn₂S₄), the as-prepared samples were annealed in air at 400 °C for 1 h with a heating rate of 5 °C min⁻¹. For Sb modification, antimony trichloride (SbCl₃, Aladdin, 99%) was dissolved in 1-methoxy-2-propanol to prepare solutions with concentrations of 1, 3, 5, 8, 10, and 20 mM. Then, 30 μL of each solution was spin-coated onto an 8 × 8 mm² area of the ZnIn₂S₄ samples using a two-step spin-coating program of 800 rpm for 10 s, followed by 3000 rpm for 60 s. The spin-coated ZnIn₂S₄ photoanodes were subsequently annealed in air at 400 °C for 1 h, following the same procedure as O-ZnIn₂S₄ to obtain Sb:O-ZnIn₂S₄ samples.

1.2. Materials characterization

The morphology and composition of samples were characterized using a Zeiss NVision 40 field-emission SEM associated with an EDS (Oxford Ultim Max 40). The crystal structures were analyzed by XRD diffraction on Thermo Scientific ARL EQUINOX 1000 diffractometer using Cu K α radiation (40 kV and 30mA). Raman spectra were collected with a HORIBA JY LabRAM HR Evolution spectrometer using a 520 nm excitation wavelength. HAXPES was performed on PHI Quantes with a monochromatic Cr K α X-ray source (5414 eV) and a 100 μ m beam size. Room-temperature PL spectra were measured using a Picoquant FluoTime300 spectrometer, while TRPL spectra were acquired on the same instrument using 420 nm picosecond laser pulsed at a repetition rate of 40 MHz as the excitation sources. UV-vis absorbance spectra were recorded with a Shimadzu UV-3600 Plus spectrophotometer. UPS measurements were conducted using a He I (21.22 eV) excitation line, and the work function was determined from the UPS spectra by subtracting their width (that is, the energy difference between the analyses Fermi level and the high binding energy cut-off), from the He I excitation energy. XPS depth profiles were performed by etching the samples with 4 keV argon cluster ions (average cluster size of 500). Quantitative XPS analyses were carried out using Thermo Fisher Scientific Avantage Software^{6.9k}.

1.3. DFT calculations

DFT calculations were performed using the Vienna Ab initio Simulation Package (VASP) with the projector augmented wave (PAW) method.¹⁻³ The Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation (GGA) was

used to describe the exchange-correlation potential.⁴ A vacuum layer of 15 Å was applied to avoid interactions between periodic images. The plane-wave cutoff energy was set to 450 eV, and a $2 \times 2 \times 1$ k -point mesh was used. Guided by XRD and SEM analyses showing a hexagonal nanosheet structure, a $3 \times 3 \times 1$ supercell monolayer ZnIn_2S_4 exposing the (002) surface (with 63 total atoms, 9 Zn atoms, 18 In atoms and 36 S atoms) was constructed. Considering the presence of In vacancies in the as-prepared ZnIn_2S_4 indicated by quantitative analyses, models containing two In vacancies (established by removing the two In atom) were adopted as the initial configuration for the O-for-S substitution. Sb- and O- substituted models were generated by introducing Sb atoms into In vacancies and substituting O-for-S atoms. All structures were relaxed until the convergence tolerances of energy and force were less than 1.0×10^{-5} eV and 2.0×10^{-2} eV/Å, respectively. The DFT-D3 method was used to describe the van der Waals interaction.⁵ The formation energy (E_{form}) of O-for-S substituted systems was defined as:

$$E_{\text{form}} = E_{\text{substituted}} - E_{\text{unsubstituted}} - n\mu_O + n\mu_S \quad (1)$$

where $E_{\text{substituted}}$ and $E_{\text{unsubstituted}}$ are the total energies of O-substituted (with different n number of O atoms) and unsubstituted systems, respectively, and μ_O and μ_S are the chemical potential of O and S atoms, respectively.

1.4. PEC characterization

PEC measurements were carried out at room temperature on an electrochemical workstation (CHI 760e, CH Instruments Inc., China) using a conventional three-electrode cell with a Pt foil counter electrode and a saturated Ag/AgCl reference

electrode. Electrical contact to the prepared photoanodes was established by soldering a copper wire to the designated region of the FTO substrate using indium, followed by encapsulation with epoxy resin (Araldite) to serve as the working electrode. The exposed electrode area after encapsulation was determined using calibrated digital images and analyzed with ImageJ^{1.53k} software (Fig. S1). A commercial AM 1.5G solar simulator (LCS-100, Newport Corporation, 94011A-ES) was employed as the light source, and the irradiance was adjusted to 100 mWcm⁻² using a certified reference cell (Konica-Minolta AK-200). Linear sweep voltammograms (*J-V* curves) were recorded in 0.5 Na₂SO₄ electrolyte (pH 6.8, measured using a combined pH electrode LE438 IP67 on an F2-Standard ion meter, Mettler Toledo) under an anodic scan at a rate of 10 mV s⁻¹. All the measured potentials versus Ag/AgCl reference electrode were converted to the potentials versus RHE according to the Nernst equation:

$$E_{\text{RHE}} = E_{\text{Ag/AgCl}} + 0.0591\text{pH} + 0.1976 \quad (2)$$

The ABPE was calculated from the *J-V* curves under AM1.5G illumination using the equation:⁶

$$\text{ABPE} = \left[\frac{J_{\text{photo}} (\text{mA cm}^{-2}) \times (1.23 - V_{\text{app}}) (\text{V})}{P_{\text{AM1.5G}} (\text{mW cm}^{-2})} \right] \times 100\% \quad (3)$$

where V_{app} is the applied potential versus RHE, J_{photo} is the photocurrent density measured under an applied bias, and $P_{\text{AM1.5G}}$ is the AM 1.5G simulated sunlight irradiance (100 mW cm⁻²).

The IPCE spectra were measured at 1.0 V vs. RHE in 0.5M Na₂SO₄ electrolyte using a monochromatic light source generated from a 150W Xenon-arc lamp (Newport, model 66902) equipped with a monochromator (model 75160) and a Merlin lock-in

detector (model 70105). Measurements were conducted over the wavelength range from 300 to 600 nm with a 20 nm interval. The monochromatic light intensity at each wavelength was calibrated with a calibrated reference cell (Thorlabs PDS1010-CAL).

The IPCE at a given wavelength (λ) was calculated using the following equation:⁶

$$\text{IPCE}(\lambda) = \frac{1240(\text{V} \times \text{nm})}{\lambda(\text{nm})} \times \frac{(J_{\text{light}} - J_{\text{dark}})(\text{mA cm}^{-2})}{P_{\text{mono}}(\text{mW cm}^{-2})} \times 100\% \quad (4)$$

where 1240 V nm represents a multiplication of Planck constant (h) and the light speed (c), λ is the incident light wavelength (nm), P_{mono} is the monochromatic illumination power intensity, and J_{light} and J_{dark} are the current density under illumination and in the dark, respectively.

1.5. PEIS and Mott-Schottky measurements

The PEIS measurements were conducted in a frequency range of 0.2 Hz to 100 kHz with an amplitude of 15 mV under constant AM1.5M simulated sunlight illumination (100 mWcm⁻²). The obtained PEIS data were analyzed using the Randles equivalent circuit model, and fitting was performed with ZView software (Scribner Associates). The effective capacitances associated with the CPEs were calculated using the expressions reported in the literature:

$$C_{\text{bulk}} = Y_{0,1}^{1/n_1} \left(\frac{1}{R_s} + \frac{1}{R_{\text{trap}} + R_{\text{ss}}} \right)^{n_1-1/n_1} \quad (5)$$

$$C_{\text{ss}} = Y_{0,2}^{1/n_2} \left(\frac{1}{R_{\text{trap}}} + \frac{1}{R_{\text{ss}}} \right)^{n_2-1/n_2} \quad (6)$$

where C_{bulk} represents the bulk capacitance of the space-charge layer, C_{ss} denotes the

surface capacitance at the semiconductor/electrolyte interface, and Y and n are parameters from the CPE fitting related to the impedance behavior. The R_s accounts for the combined resistance from the electrolyte, external contact layers, and conductive substrate. The R_{trap} reflects the bulk charge transport resistance within the photoanode, while R_{ct} corresponds to the interfacial charge transfer resistance at the semiconductor/electrolyte interface.

Mott-Schottky measurements were performed under dark conditions, with an anodic potential scan at a 15 mV AC amplitude and frequencies of 0.1, 0.2, 0.3, and 0.4 kHz. The carrier density at each frequency was calculated, and the average value was used to determine the carrier density in 0.5 M Na₂SO₄ solution, following the Mott-Schottky equation:⁷

$$\frac{1}{C^2} = \frac{2}{\varepsilon_0 \varepsilon A^2 q N_D} \times (V - V_{\text{fb}} - \frac{k_B T}{q}) \quad (7)$$

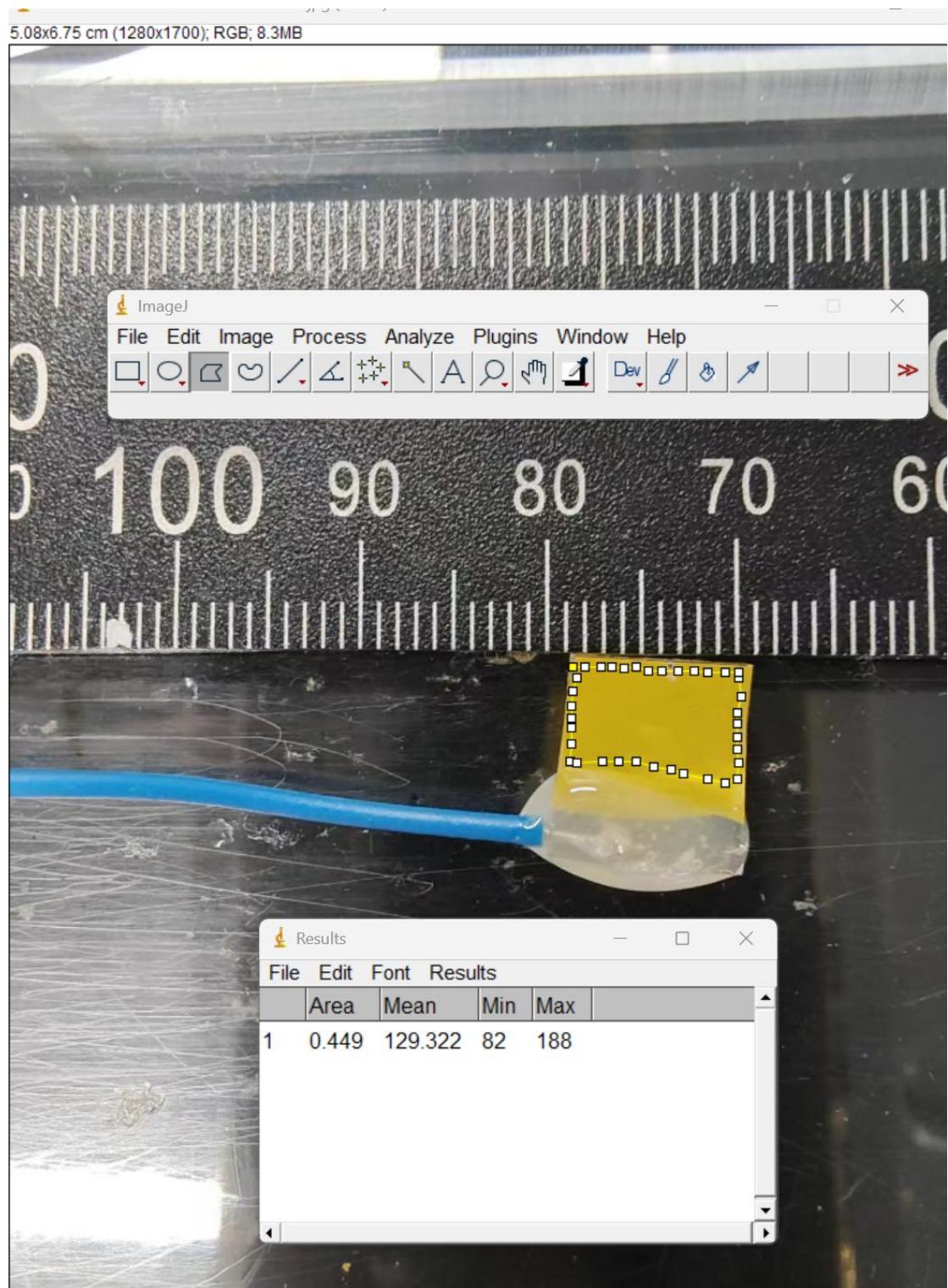
where C is the space-charge capacitance, V is the applied potential versus RHE, V_{fb} is the flat-band potential versus RHE, N_D is the charge carrier density, ε_0 is the vacuum permittivity (8.854×10^{-14} C V⁻¹ cm⁻¹), ε is dielectric constant of the semiconductor (taken as 4.7 for the ZnIn₂S₄),⁷ k_B is Boltzmann constant (1.381×10^{-23} J K⁻¹), q is the electronic charge (1.602×10^{-19} C), and T is the absolute temperature.

1.6. Supplemented measurements and equations.

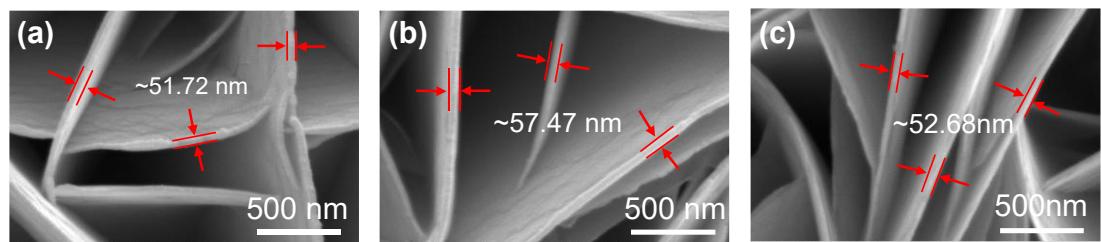
The OCP decays during the light on/off transient were recorded after illuminating the photoanodes for 10 min under the same conditions use in the PEC measurements. The carrier lifetime (τ_n) was calculated using the following equation⁸:

$$\tau_n = \frac{k_B T}{q} \left(\frac{d(\text{OCP})}{dt} \right)^{-1} \quad (8)$$

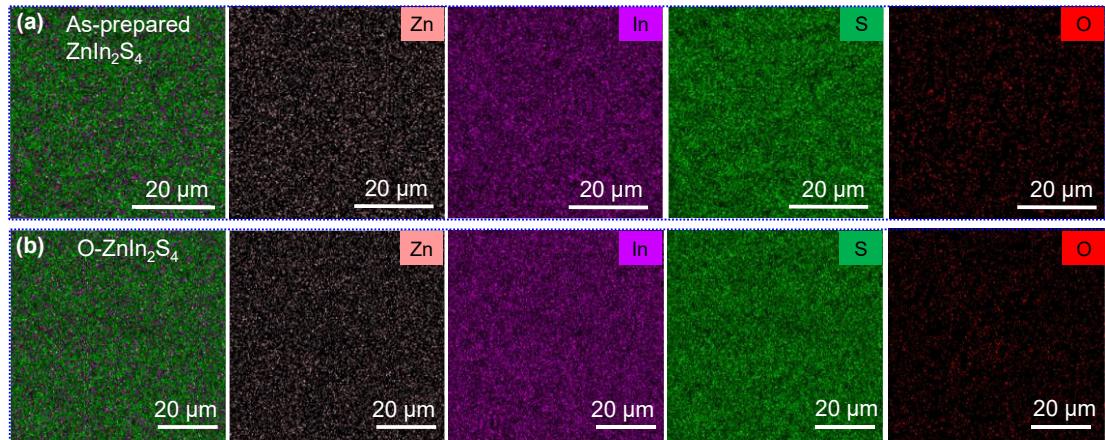
where τ_n is the potential-dependent carrier lifetime, k_B is the Boltzmann constant, T is the temperature in Kelvin, q is the electronic charge, and $d(\text{OCP})/dt$ represents derivative of the OCP transient decay.

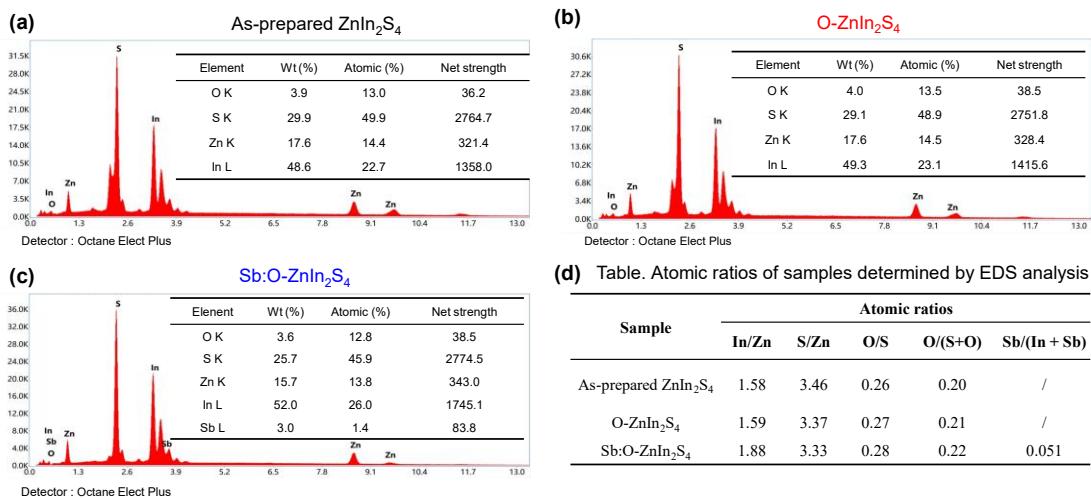

The η_{sep} and η_{inj} were evaluated using the following equations:⁹

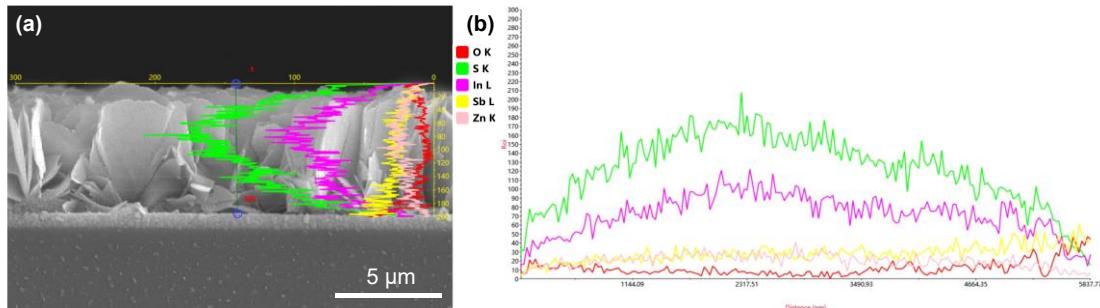
$$J_{\text{abs}} = \frac{q}{hc} \int_{\lambda} \lambda E(\lambda) A(\lambda) d\lambda = \int_{\lambda} \frac{\lambda E(\lambda) A(\lambda)}{1240} d\lambda \quad (9)$$

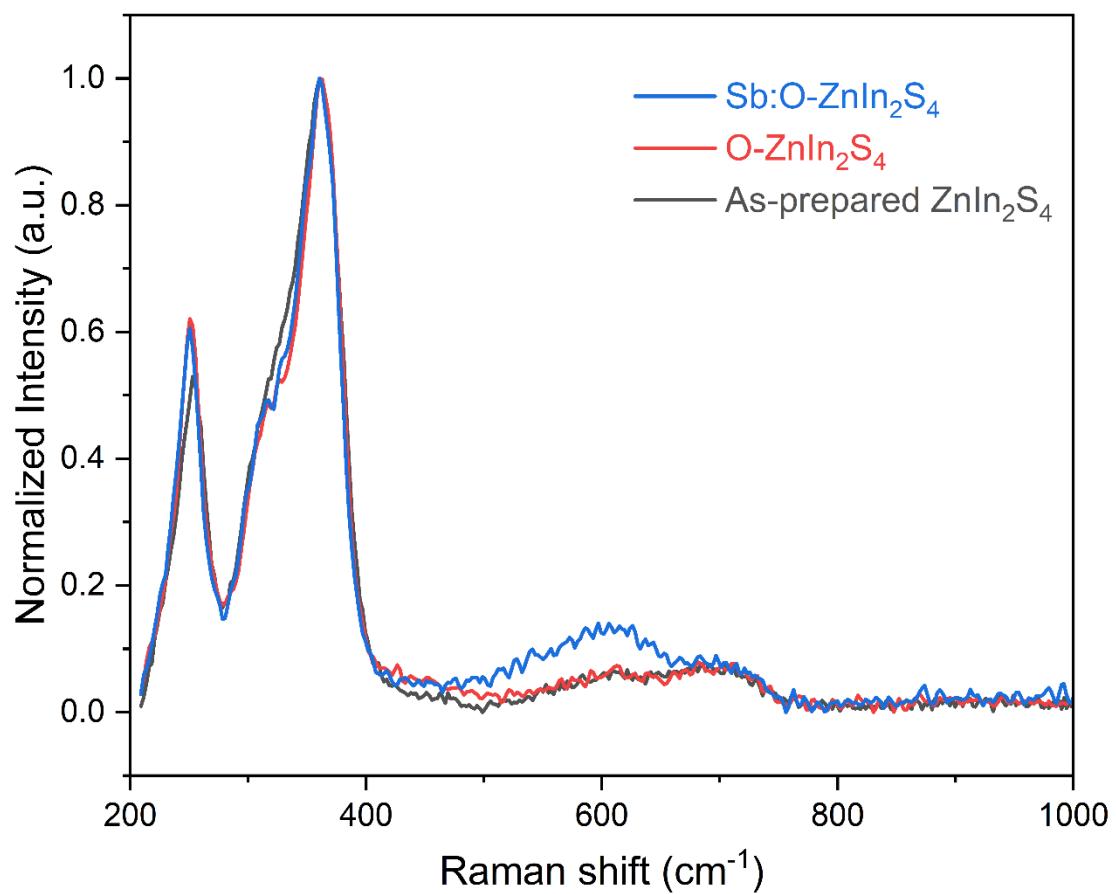

$$\eta_{\text{sep}} = J_{\text{ph}}^{\text{Na}_2\text{SO}_3 + \text{Na}_2\text{S}} / J_{\text{abs}} \quad (10)$$

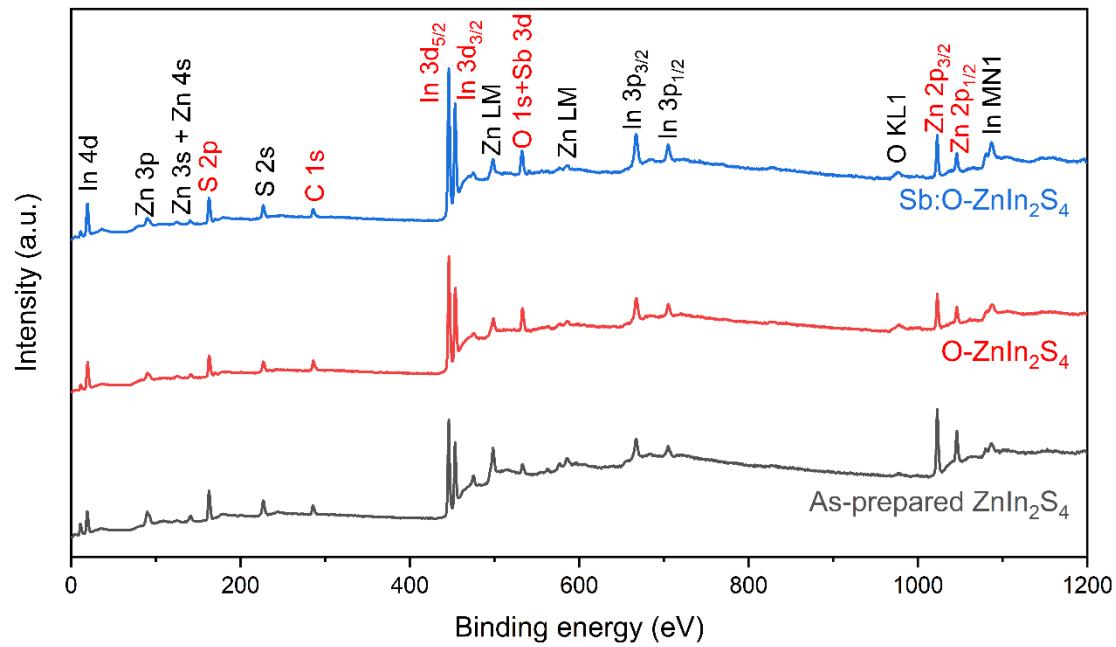
$$\eta_{\text{inj}} = J_{\text{ph}}^{\text{Na}_2\text{SO}_4} / J_{\text{ph}}^{\text{Na}_2\text{SO}_3 + \text{Na}_2\text{S}} \quad (11)$$

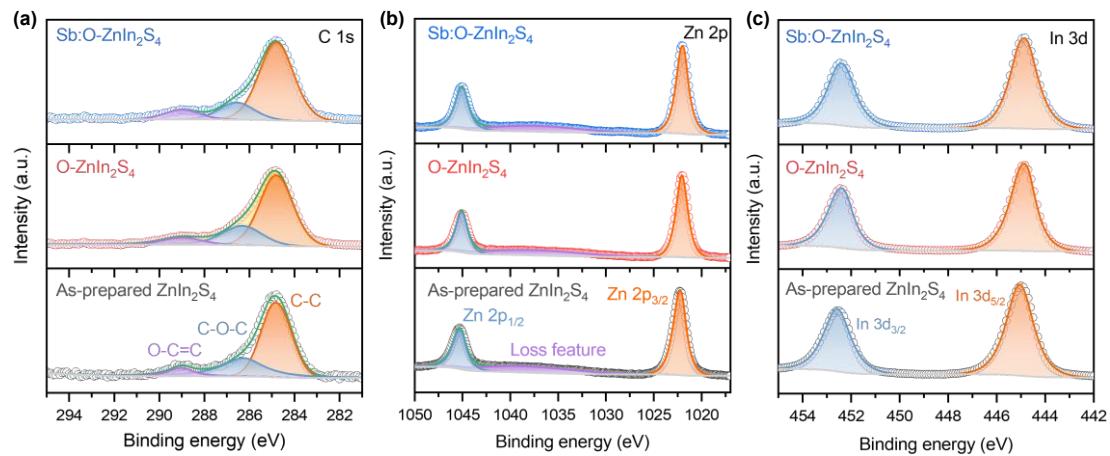

Here, J_{abs} is the maximum photocurrent density, assuming that all the absorbed photons in the ZnIn_2S_4 samples are efficiently converted into electrical current. $E(\lambda)$ and $A(\lambda)$ both functions of photon wavelength (λ), where $E(\lambda)$ represents the spectral irradiance of the AM 1.5 G solar spectrum (ASTM G173-03), and $A(\lambda)$ denotes the absorbance of the ZnIn_2S_4 samples obtained from the UV-Visible absorption spectrum. The constants h , q , and c are the Planck constant, electronic charge, the light speed, respectively. In addition, $J_{\text{ph}}^{\text{Na}_2\text{SO}_3 + \text{Na}_2\text{S}}$ is the photocurrent density measured in 0.35M Na_2SO_3 and 0.25M Na_2S mixed electrolyte, which served as hole scavengers, ensuring the hole injection rate approaching 100%. Meanwhile, $J_{\text{ph}}^{\text{Na}_2\text{SO}_4}$ is the photocurrent density measured in 0.5M Na_2SO_4 , using the J - V curve data.

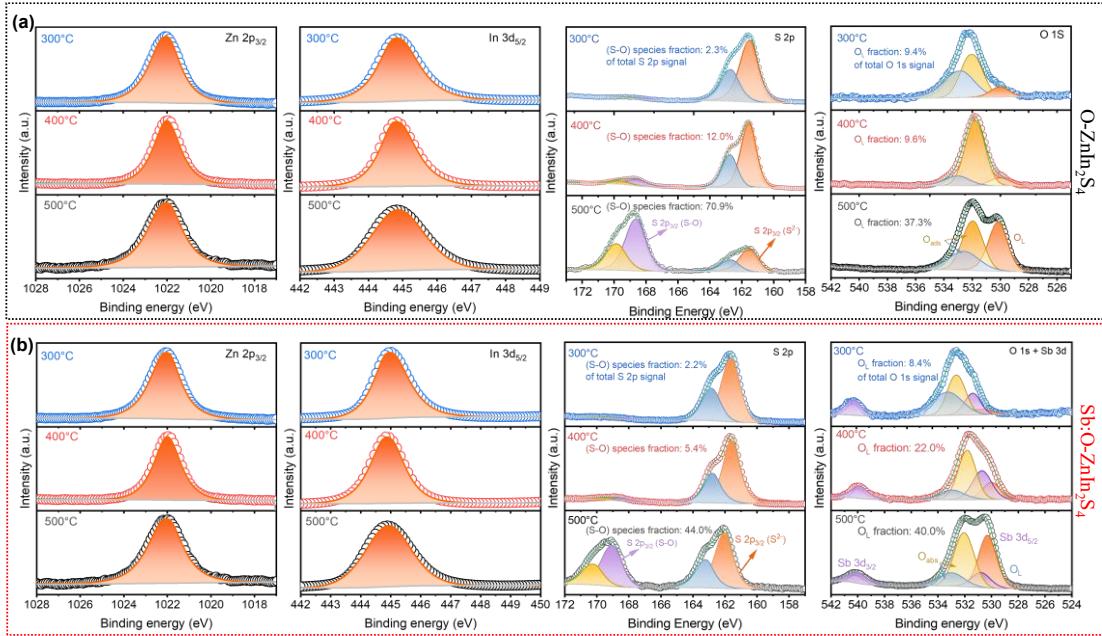

Fig. S1. Photographic image of fabricated photoanode. The exposed area of the electrode was measured with ImageJ1.53k software.

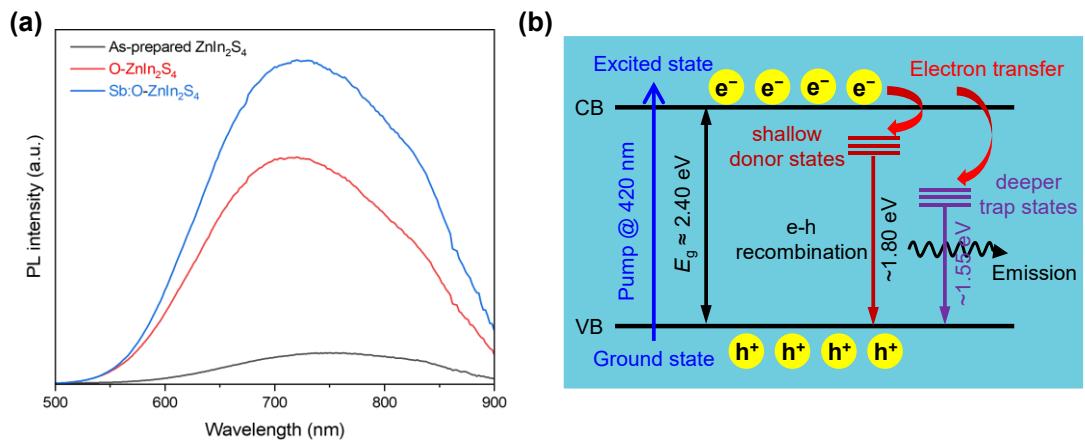

Fig. S2. Top-view SEM images for as-prepared ZnIn_2S_4 (a), $\text{O-ZnIn}_2\text{S}_4$ (b), and $\text{Sb:O-ZnIn}_2\text{S}_4$ (c) nanosheet films. All samples exhibit an ordered two-dimensional (2D) nanosheet morphology, with an average thickness of approximately 50 nm.

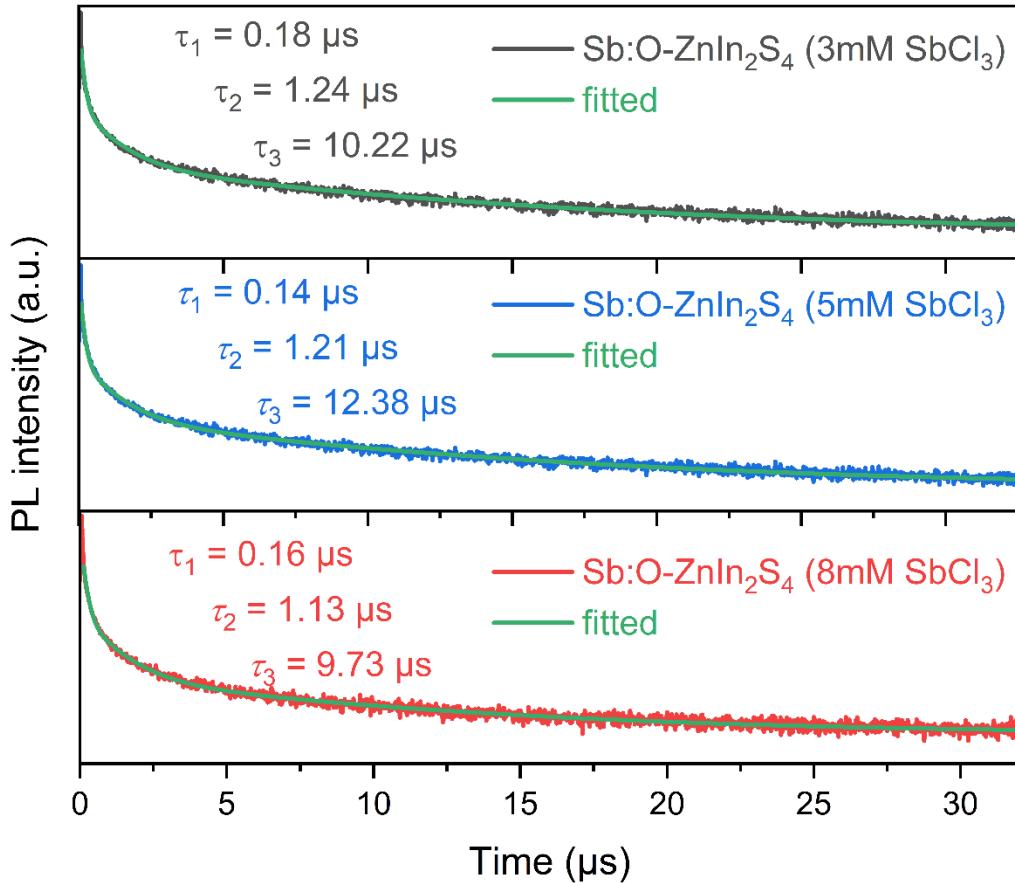

Fig. S3. SEM-EDS elemental mappings of as-prepared ZnIn_2S_4 (a) and $\text{O-ZnIn}_2\text{S}_4$ (b) samples.

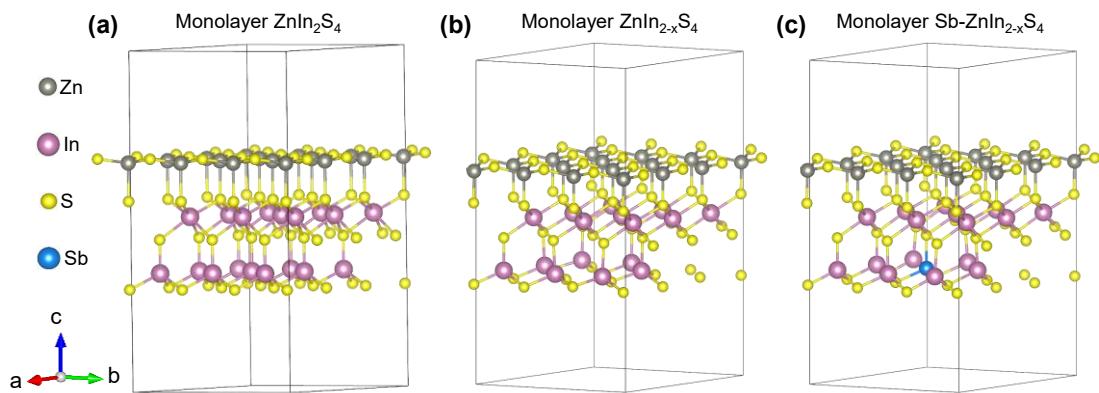

Fig. S4. (a-c) SEM-EDS elemental mappings analysis of as-prepared ZnIn_2S_4 (a), O- ZnIn_2S_4 (b), and Sb:O- ZnIn_2S_4 (c) samples. (d) The corresponding atomic ratios of the three samples were obtained through EDS mapping analysis.

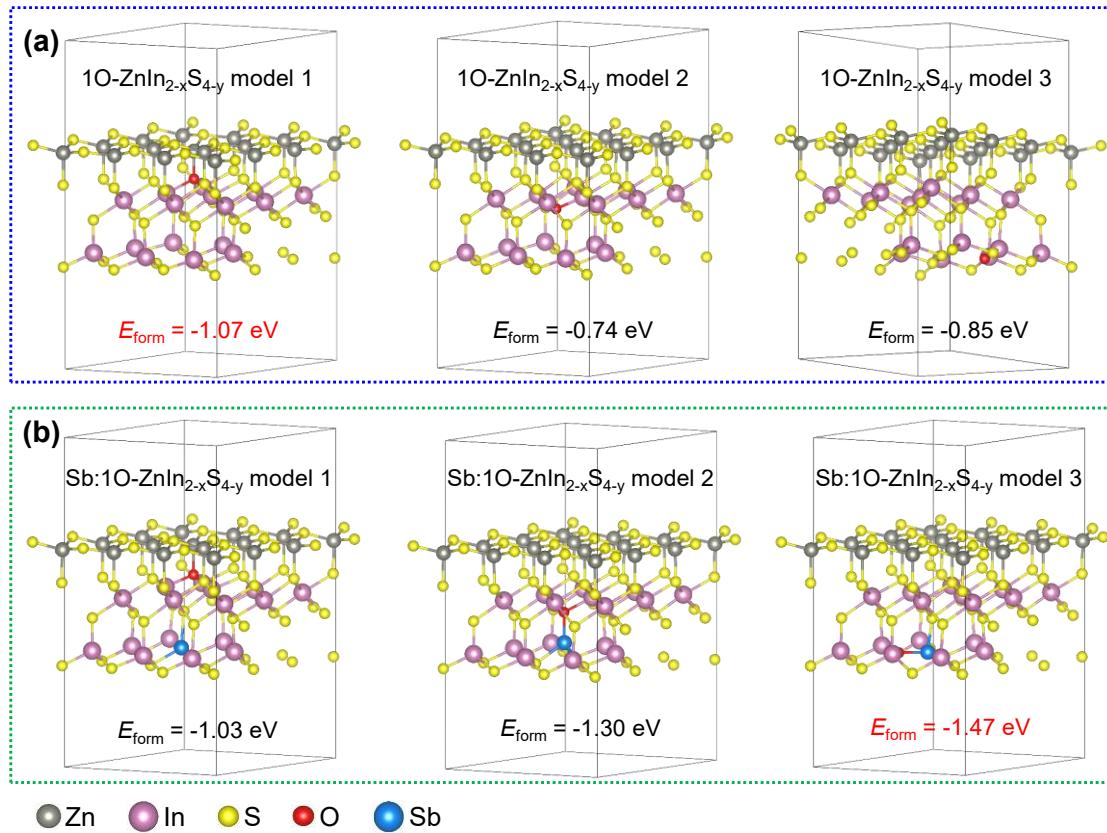

Fig. S5. STM-EDS line scan of elements (Zn, In, Sb, S, O) in the Sb:O- ZnIn_2S_4 sample.

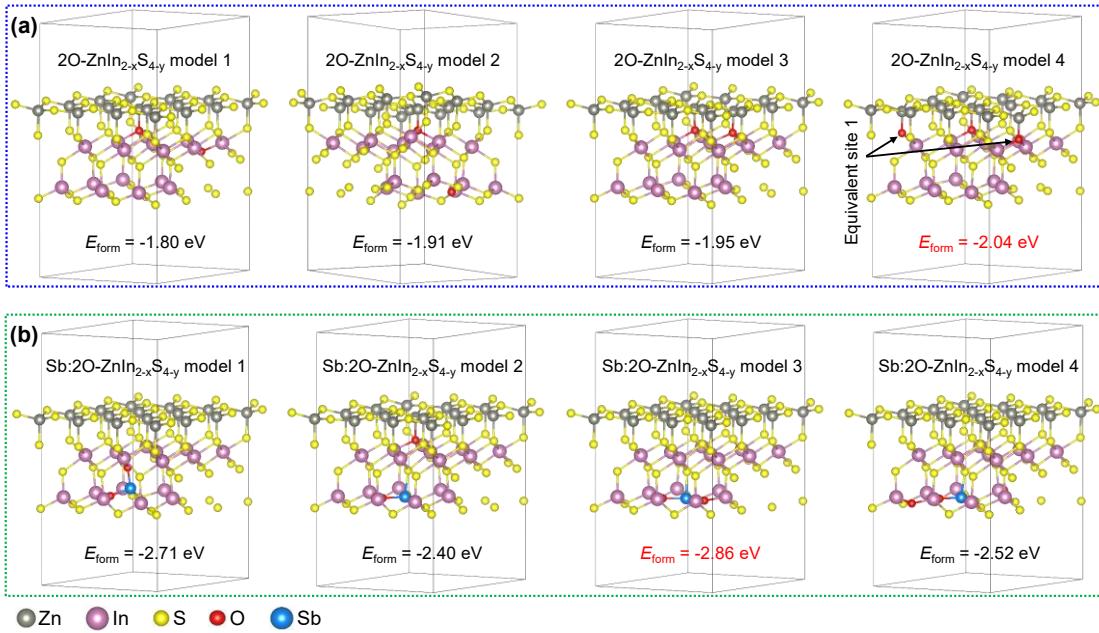

Fig. S6. Normalized Raman spectra of as-prepared ZnIn₂S₄, O-ZnIn₂S₄, and Sb:O-ZnIn₂S₄ samples.

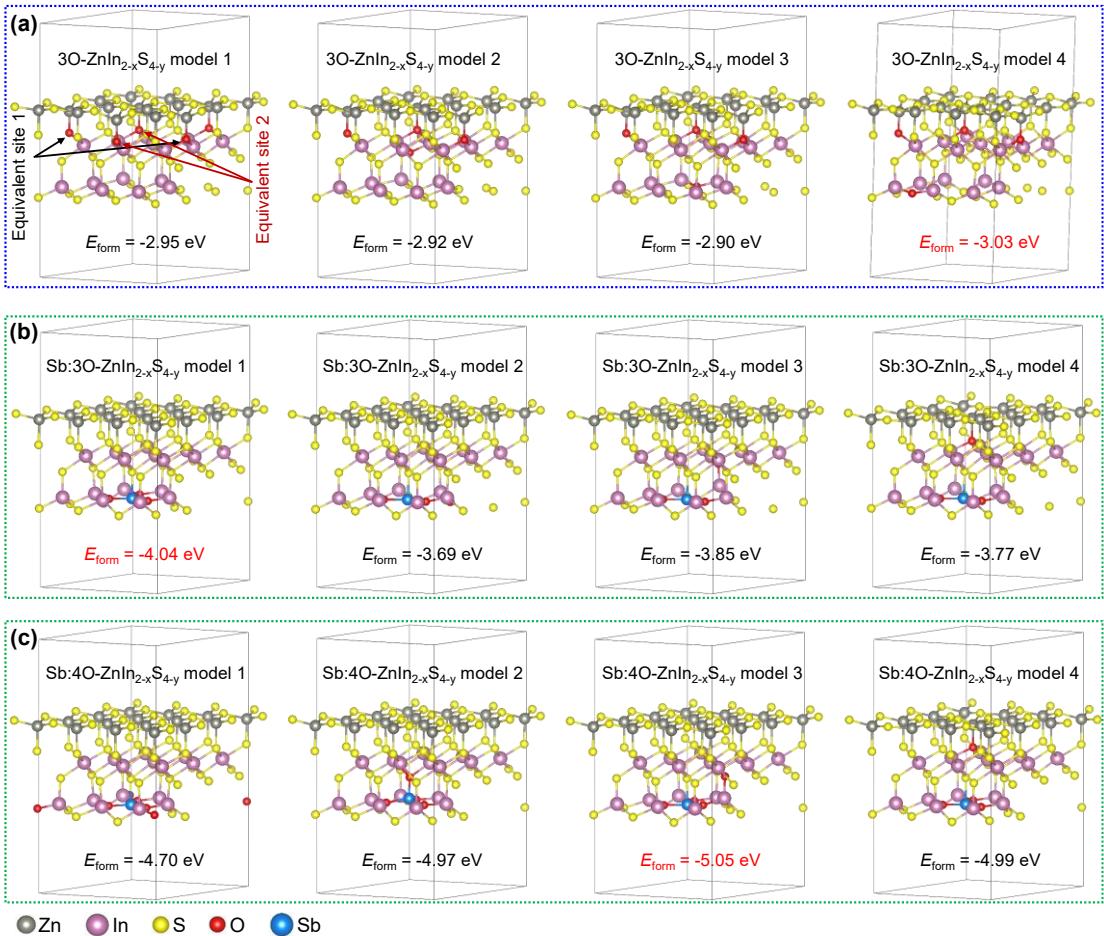

Fig. S7. XPS survey spectra of as-prepared ZnIn_2S_4 , $\text{O-ZnIn}_2\text{S}_4$, and $\text{Sb:O-ZnIn}_2\text{S}_4$ samples. The charging shift for these spectra compensated using the C 1s at 284.8 eV as the reference.

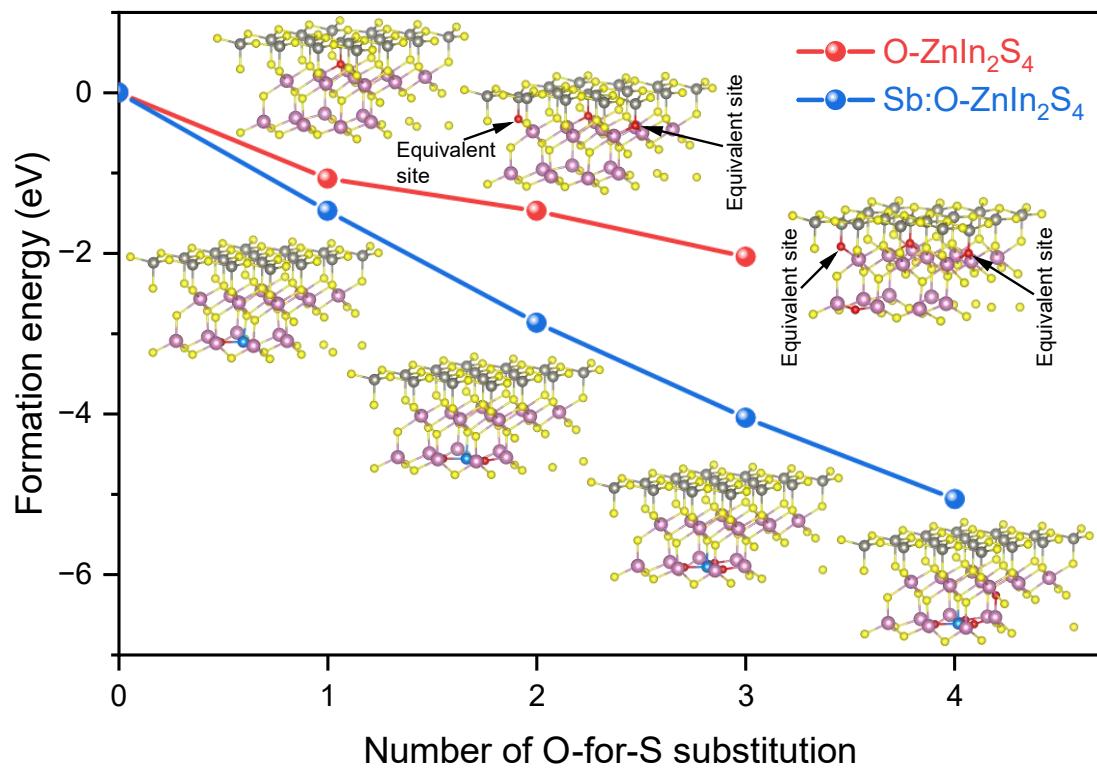

Fig. S8. XPS core-level spectra of C 1s (a), Zn 2p (b), and In 3d (c) for as-prepared ZnIn_2S_4 , $\text{O-ZnIn}_2\text{S}_4$, and $\text{Sb:O-ZnIn}_2\text{S}_4$ samples.

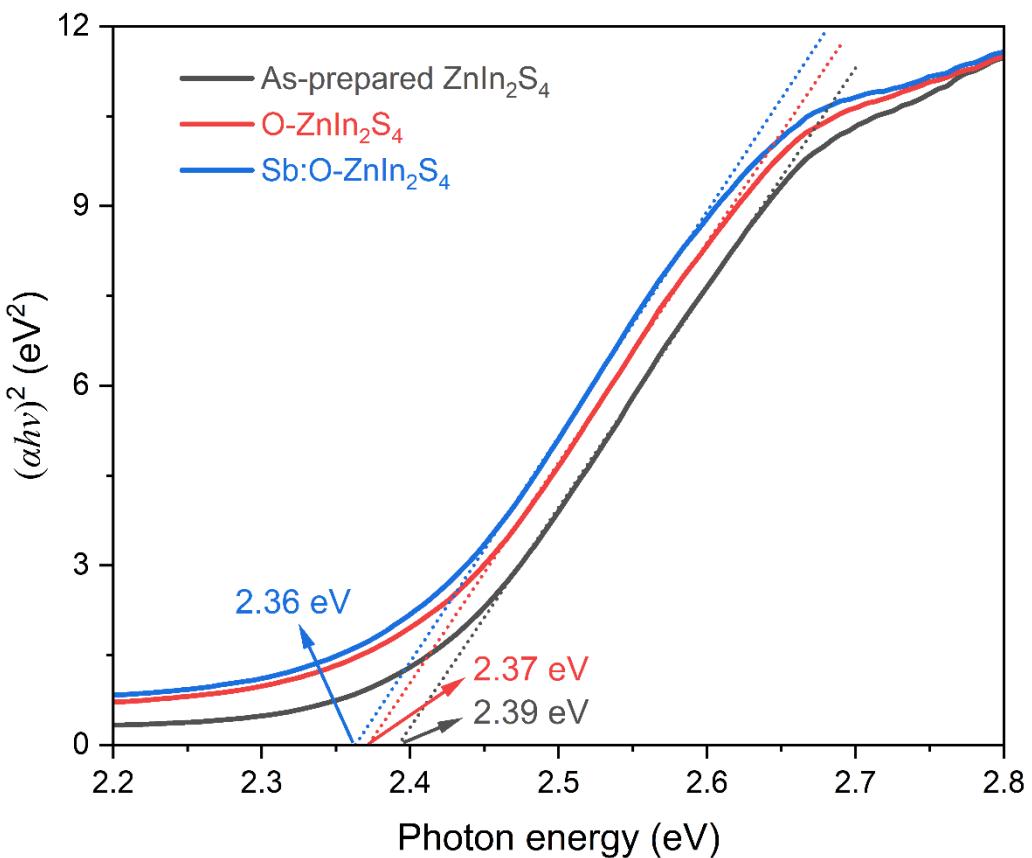

Fig. S9. Temperature-dependent HAXPES analysis of O-ZnIn₂S₄ (a) and Sb:O-ZnIn₂S₄ (b) after air annealing under identical conditions. S 2p spectra shows that S-O components increase with temperature in both cases but remains consistently lower in Sb:O-ZnIn₂S₄ than in O-ZnIn₂S₄ at the same temperature. Moreover, the lattice-related O fraction or O/(S+O) ratio versus annealing temperature shows a monotonic increase with temperature and consistently higher lattice O in Sb:O-ZnIn₂S₄ compared with O-ZnIn₂S₄ under identical annealing conditions. These results support that Sb promotes O incorporation into lattice/near-lattice configurations while mitigating sulfur over-oxidation during air annealing.

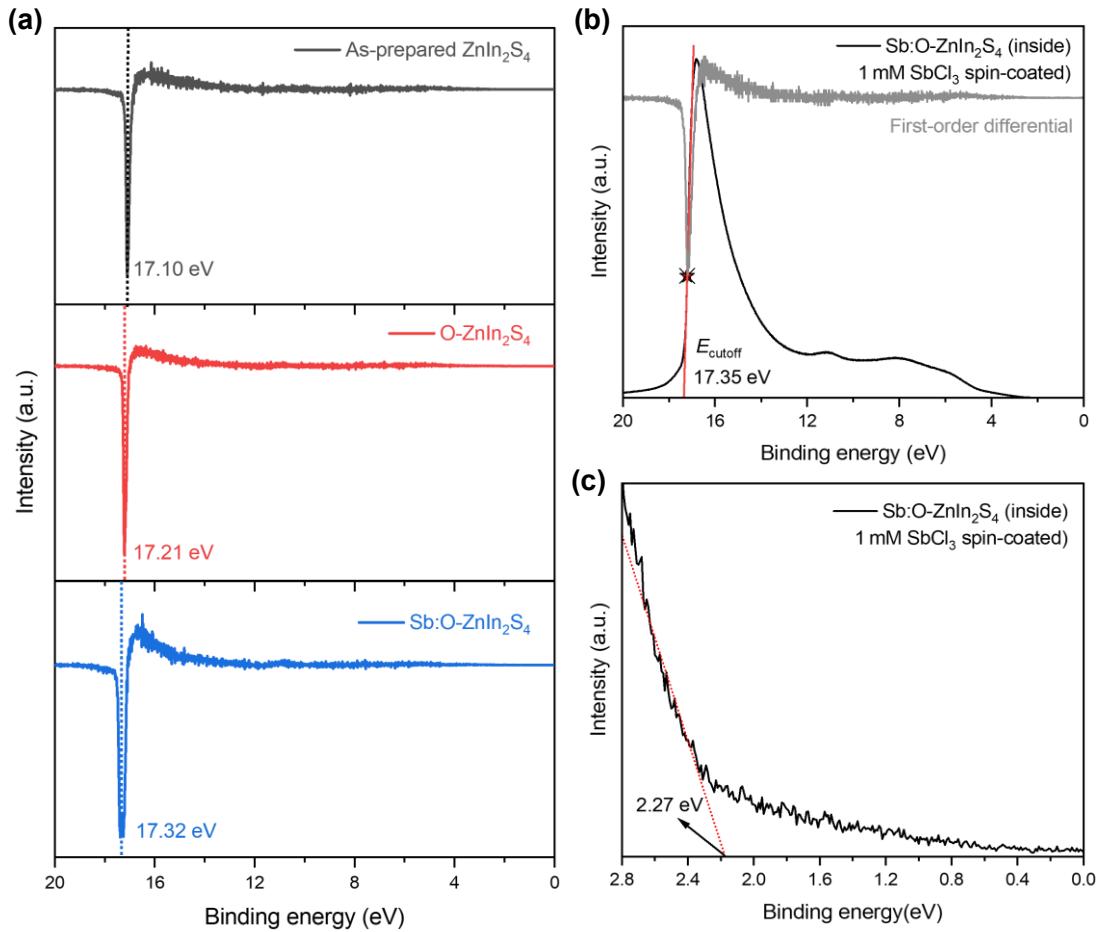

Fig. S10. (a) Room temperature PL spectra for as-prepared ZnIn₂S₄, O-ZnIn₂S₄, and Sb:O-ZnIn₂S₄ samples measured under 420 nm laser excitation. (b) Schematic illustration of the mechanisms involved in the PL emission related to defects in ZnIn₂S₄.

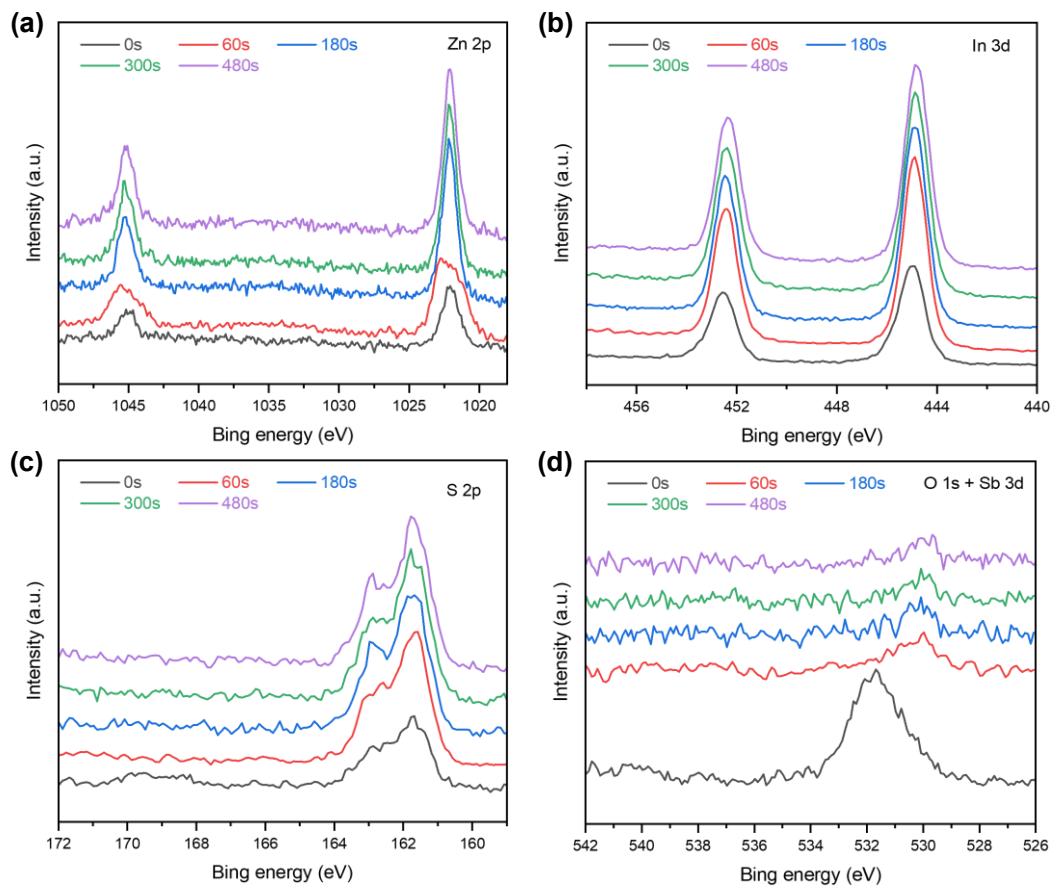

Fig. S11. TRPL decay curves of Sb:O-ZnIn₂S₄ samples with different SbCl₃ concentrations, recorded at about 690 nm under 420 nm laser excitation. TRPL provides direct kinetic evidence that moderate Sb incorporation suppresses trap-assisted recombination, whereas excessive Sb reverses this trend. The optimized 5 mM Sb sample shows the longest τ_{AV} (10.15 μ s) and the largest f_3 (80.4%), accompanied by the smallest f_1 (4.1%) (Table S1), indicating suppressed non-radiative recombination via surface/interface traps. In contrast, at higher Sb concentration (8 mM), τ_{AV} decreases to 6.74 μ s and f_3 drops to 66.3%, while both the f_1 (8.8%) and the f_2 (25.0%) increase, suggesting an increased population of non-radiative traps and deep/intermediate trap-mediated recombination pathways.

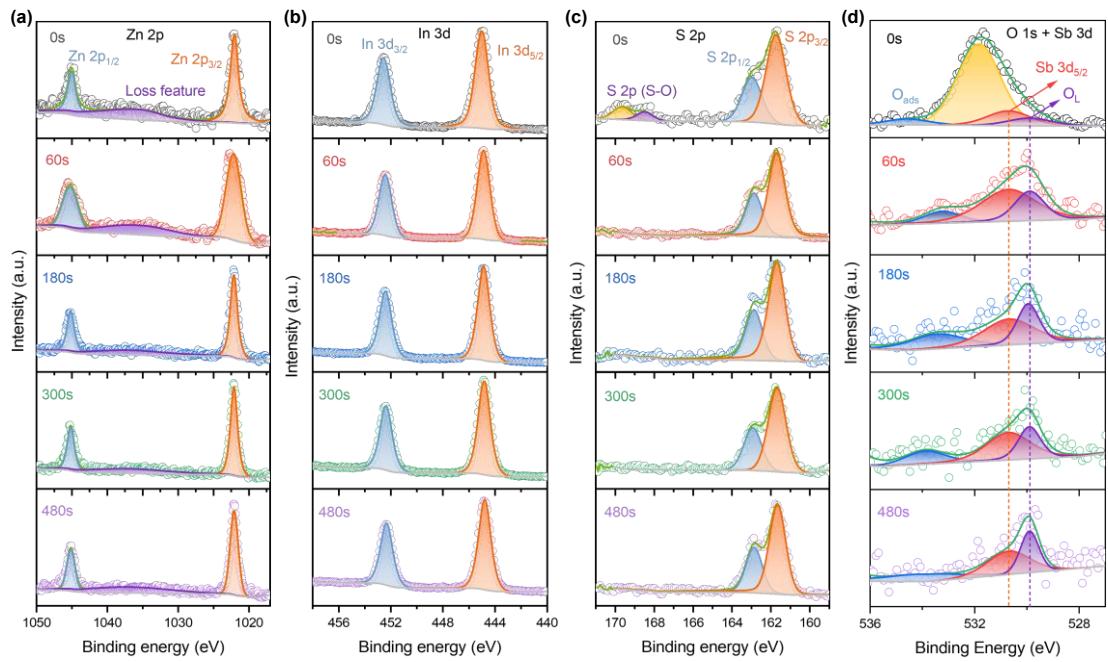

Fig. S12. (a) Constructed monolayer ZnIn_2S_4 supercell. (b) ZnIn_2S_4 supercell containing In vacancies (termed as $\text{ZnIn}_{2-x}\text{S}_4$), with an (In vacancy)/(total In atom) ratio of 0.1111. (c) ZnIn_2S_4 supercell (termed as $\text{Sb-ZnIn}_{2-x}\text{S}_4$) with partial substitution of In vacancies or In atoms by Sb, where the $\text{Sb}/(\text{Sb} + \text{In})$ ratio is 0.058 and the (In vacancy)/(total In atom) ratio is 0.056.

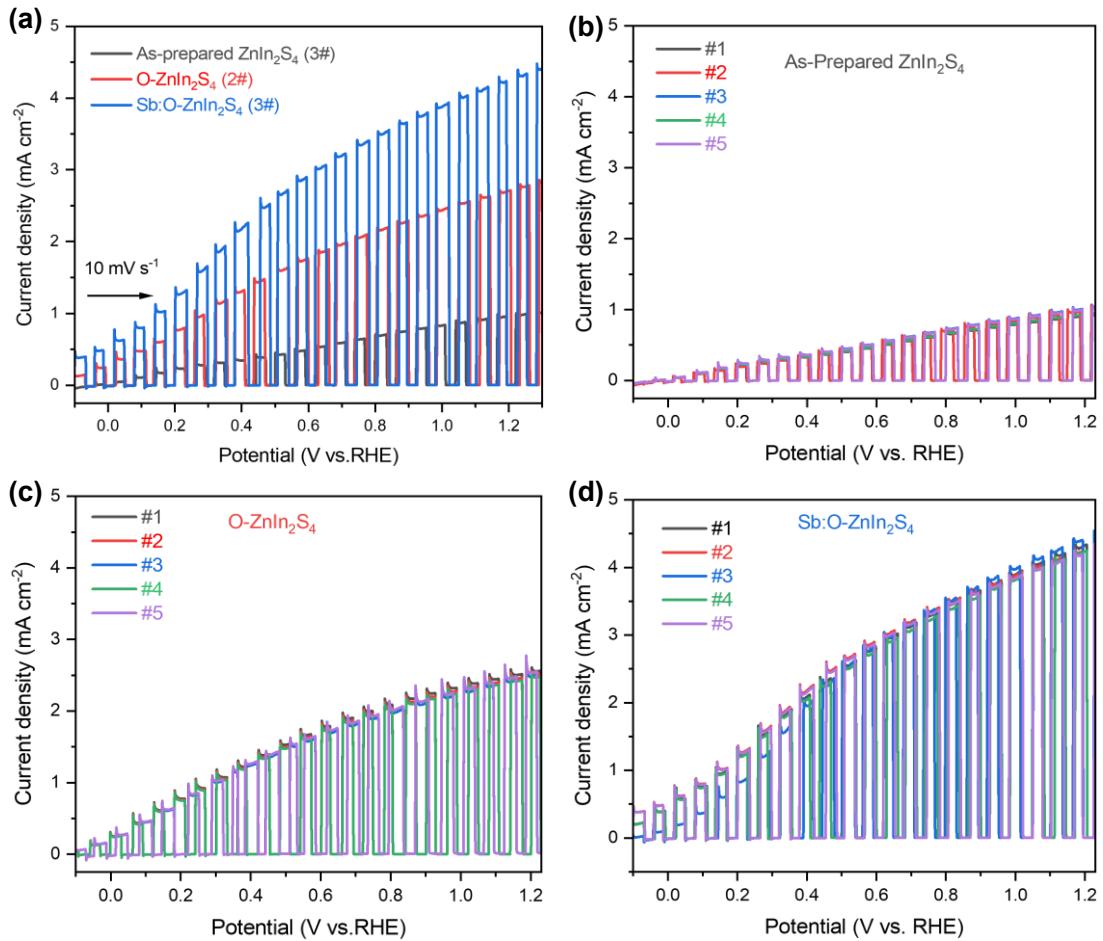

Fig. S13. (a) Simulated O-substituted ZnIn_{2-x}S₄ structures with one O atom replacing different equivalent S sites (denoted as 1O-ZnIn_{2-x}S_{4-y}) and their corresponding formation energies (E_{form}). The O/(O+S) ratio in this configuration is 0.0278. Model 1 exhibits the lowest E_{form} , indicating the most favorable single O-for-S substitution. (b) Simulated Sb- and O-cosubstituted ZnIn_{2-x}S₄ structures with one O atom replacing different equivalent S sites (termed as Sb:1O-ZnIn_{2-x}S_{4-y}) and their corresponding E_{form} . Upon Sb incorporation, Model 3 shows the lowest E_{form} , suggesting it represents the most stable structure at the same O substitution level.

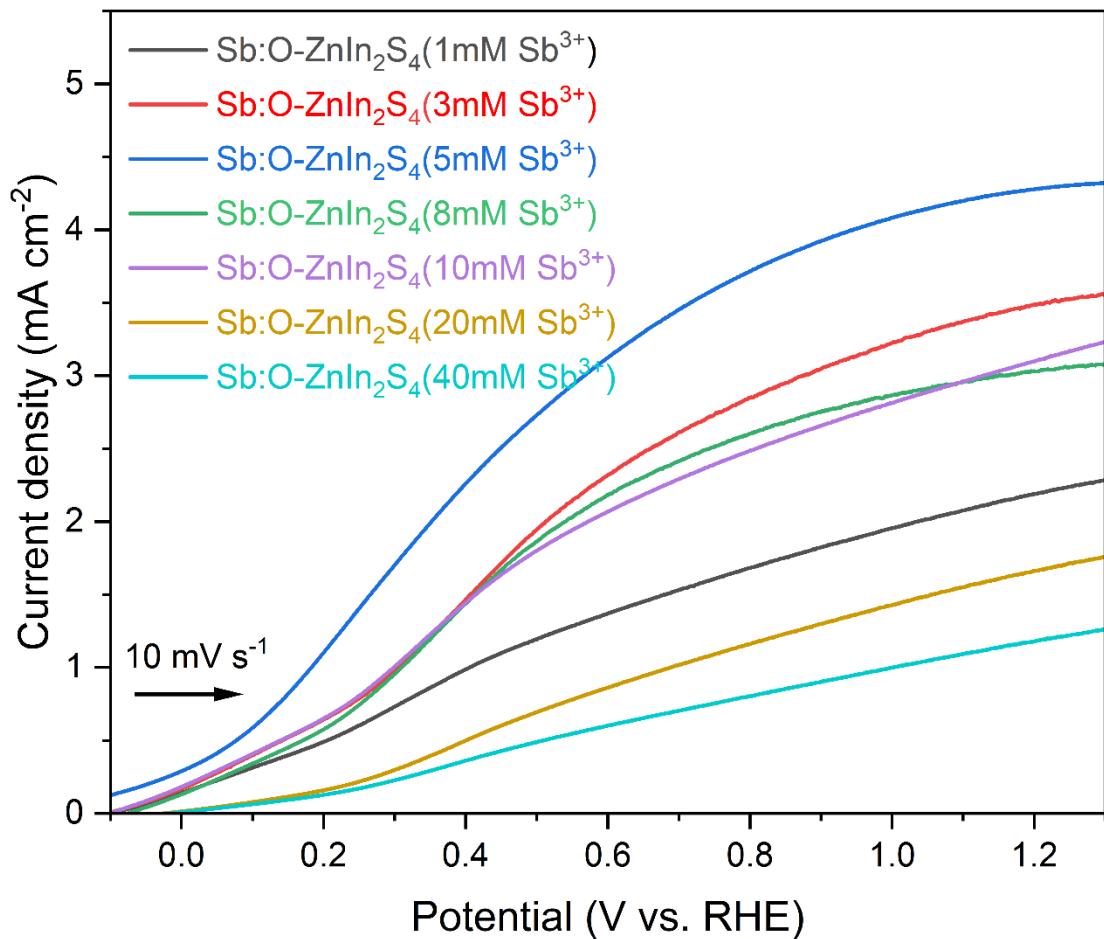

Fig. S14. (a) Simulated 2O-ZnIn_{2-x}S_{4-y} structures and their corresponding E_{form} , where two O atoms substitute different equivalent S sites. The O/(O+S) ratio in this configuration is 0.0556. Model 4 represents the most favorable 2O-for-S substitution structure. (b) Simulated Sb:2O-ZnIn_{2-x}S_{4-y} structures and their corresponding E_{form} . Model 3 is identified as the most stable structure.

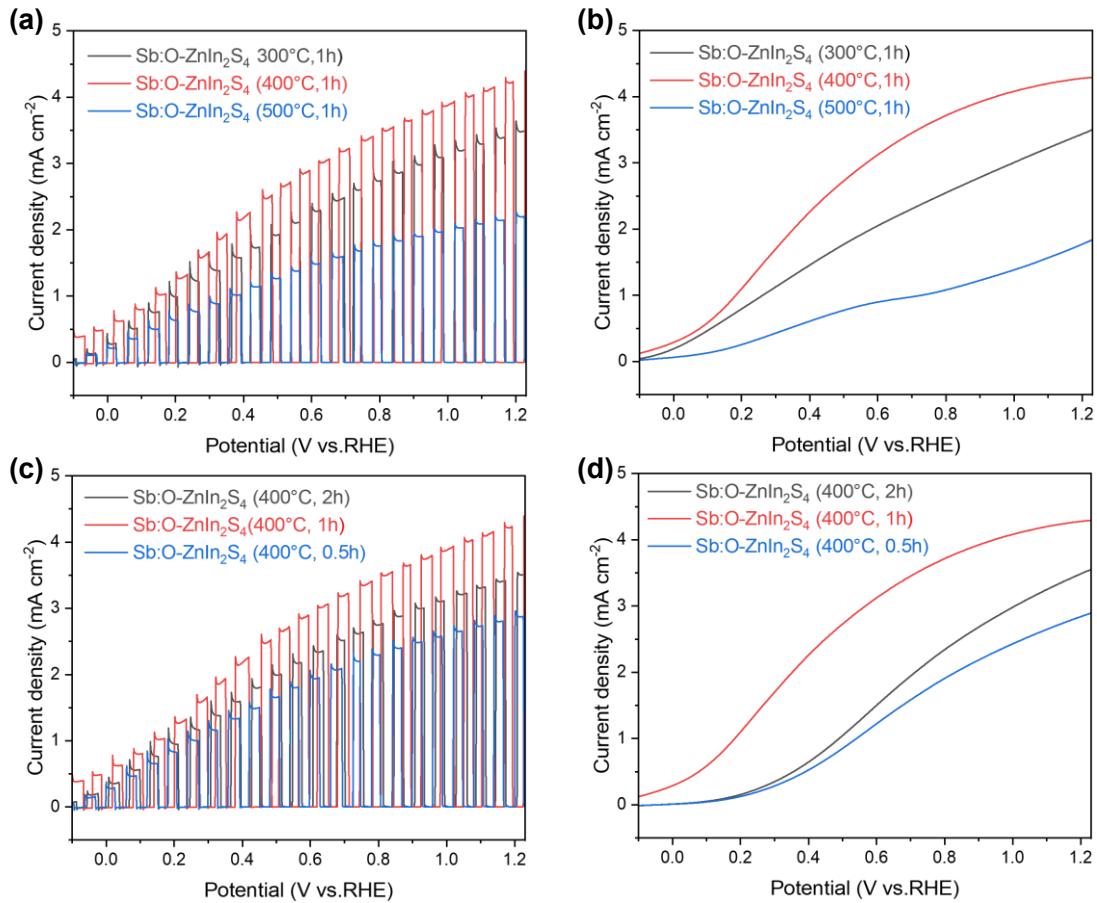

Fig. S15. (a) Simulated 3O-ZnIn_{2-x}S_{4-y} structures with three O substituting different equivalent S sites and their corresponding E_{form} . The O/(O+S) ratio is 0.0833, close to the experimentally measured O content of the O-ZnIn₂S₄ sample. Model 5 exhibits the lowest E_{form} and was used as the structural model for subsequent density of state (DOS) and partial DOS (PDOS) calculations. (b) Simulated Sb:3O-ZnIn_{2-x}S_{4-y} structures and their corresponding E_{form} , with Model 1 identified as the most stable structure. (c) Simulated Sb:4O-ZnIn_{2-x}S_{4-y} structures with four O atoms substituting different equivalent S sites and their corresponding E_{form} . The O/(O+S) ratio is 0.1111, close to the experimental measured O content of the Sb:O-ZnIn₂S₄ sample, and model 3 was used for subsequent DOS and PDOS calculations.

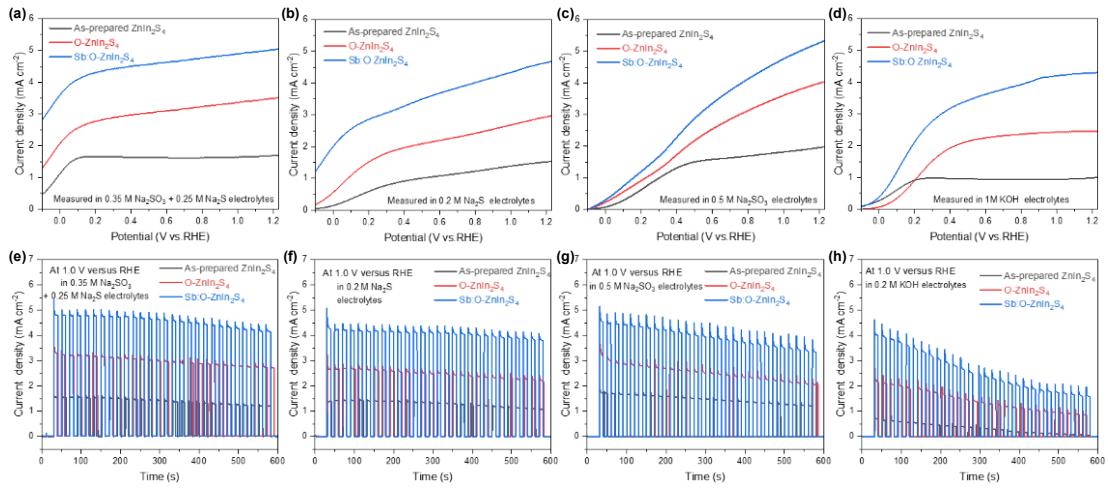

Fig. S16. Relationship between E_{form} and the number of O substitutions for the most stable structures in the O-ZnIn₂S₄ and Sb:O-ZnIn₂S₄ systems. Insets show the corresponding optimized structural models.

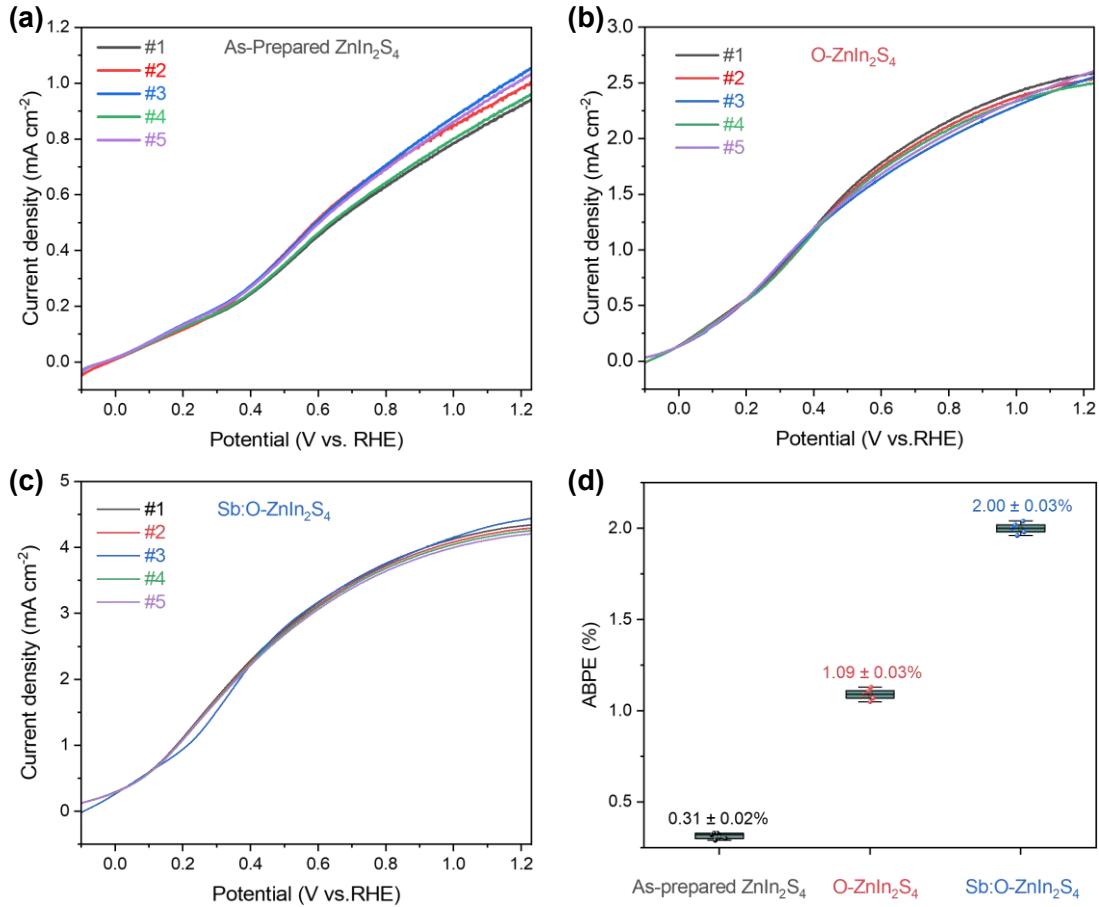

Fig. S17. Tauc plots of UV-vis absorption spectra for as-prepared ZnIn_2S_4 , $\text{O-ZnIn}_2\text{S}_4$, and $\text{Sb:O-ZnIn}_2\text{S}_4$ samples. α , absorption coefficient; h , Planck constant; ν , photon frequency.

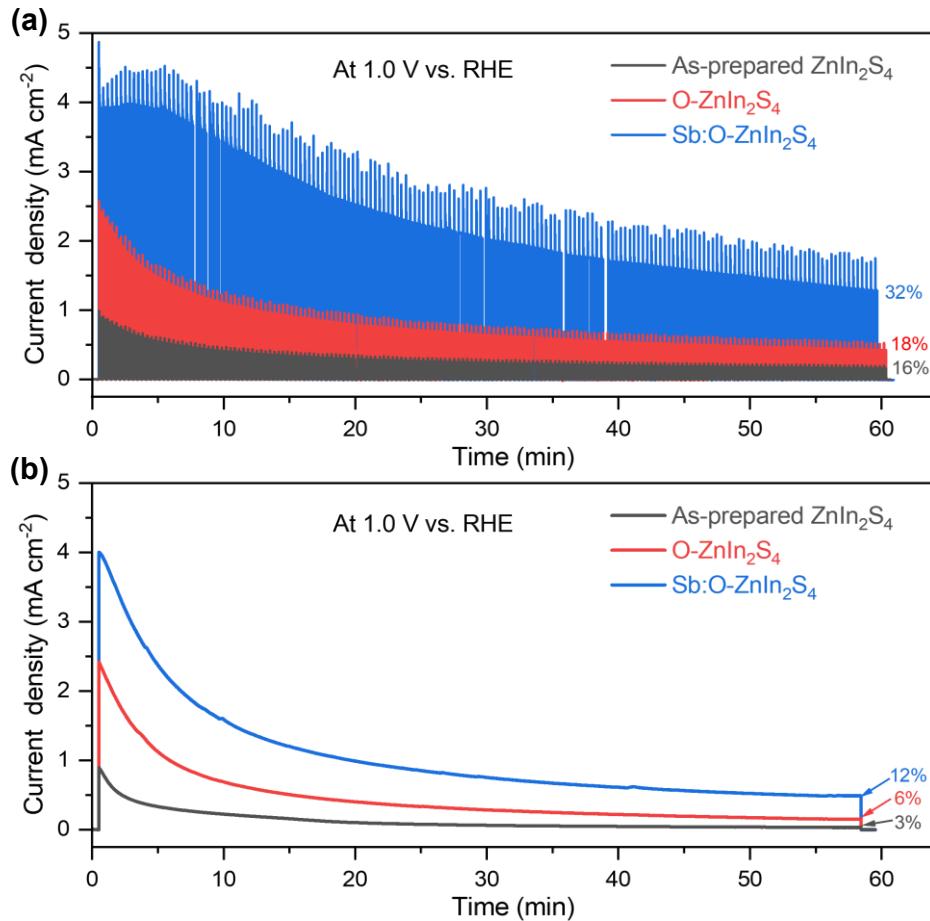

Fig. S18. (a) First-order differential of the UPS spectra for as-prepared ZnIn_2S_4 , O- ZnIn_2S_4 , and Sb:O- ZnIn_2S_4 samples. The minimum points of the first derivative curves correspond to the tangent points in the high binding energy region of the UPS spectra (Fig. 4b). The intersection of the tangent line with the X-axis defines the high binding energy cut-off (E_{cutoff}). (b) UPS spectra from the low Sb concentration region in Sb:O- ZnIn_2S_4 sample (denoted as Sb:O- ZnIn_2S_4 (inside)), obtained by spin-coating with a 1 mM SbCl_3 solution. (c) Valence band spectra of Sb:O- ZnIn_2S_4 (inside) in the low binding energy region of the UPS spectra, used to determine the valence band position.

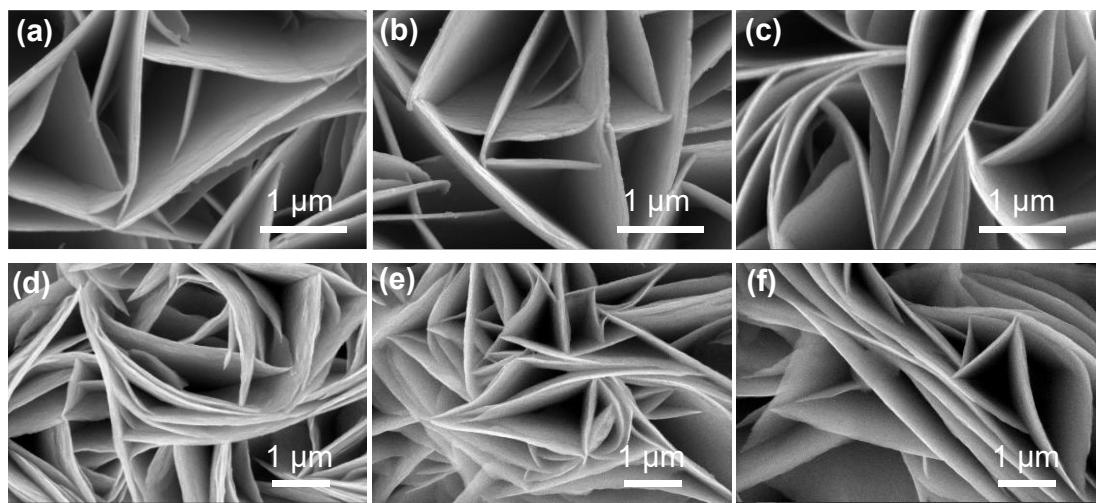

Fig. S19. XPS depth profile of the core-level spectra for Zn 2p (a), In 3d (b), S 2p (c), and (O 1s + Sb 3d) (d) in the Sb:O-ZnIn₂S₄ sample.

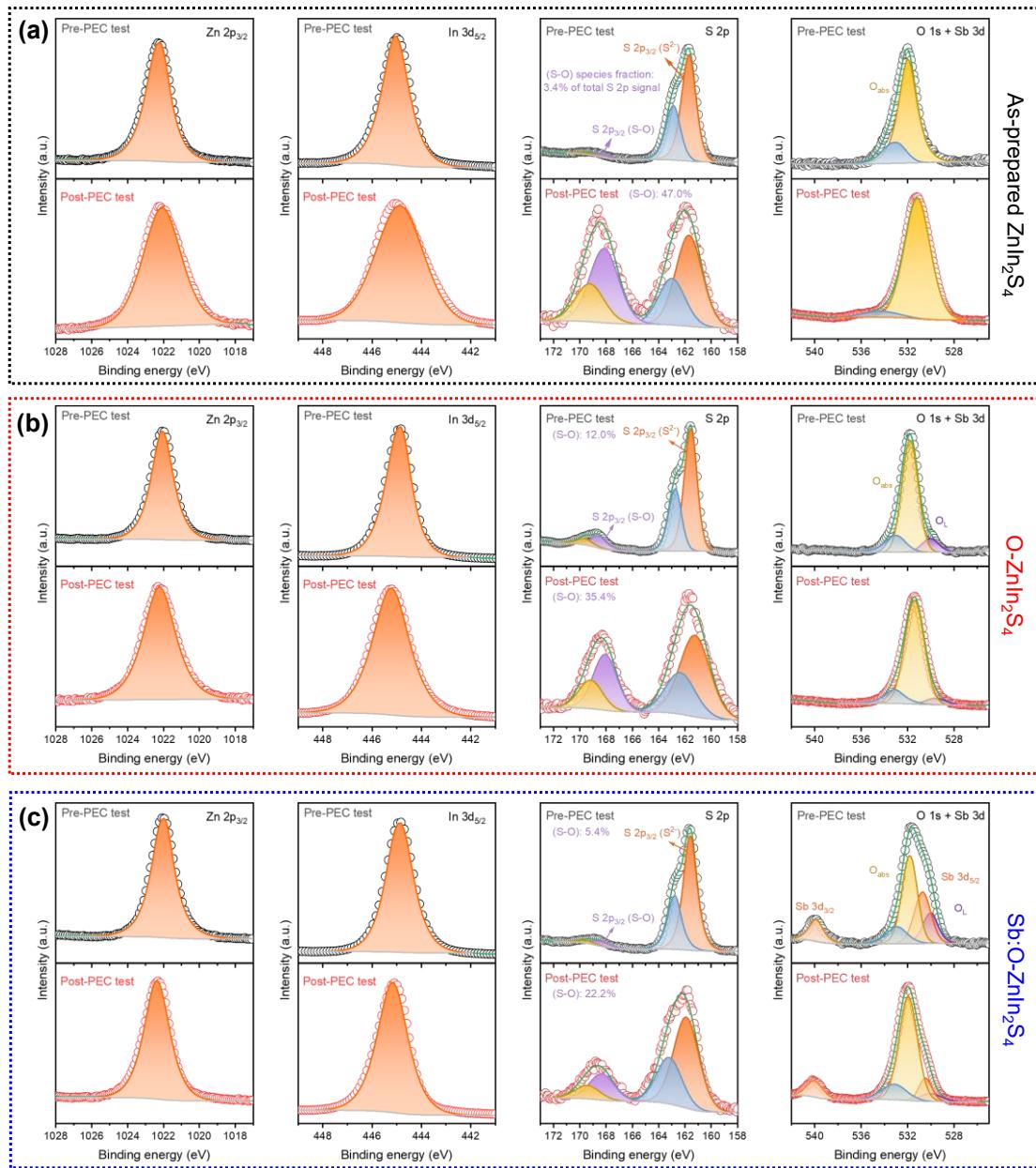

Fig. S20. Fitted core-level spectra of Zn 2p (a), In 3d (b), S 2p (c), and (O1s + Sb 3d_{5/2}) (d) for the Sb:O-ZnIn₂S₄ sample at different XPS depth etching times.

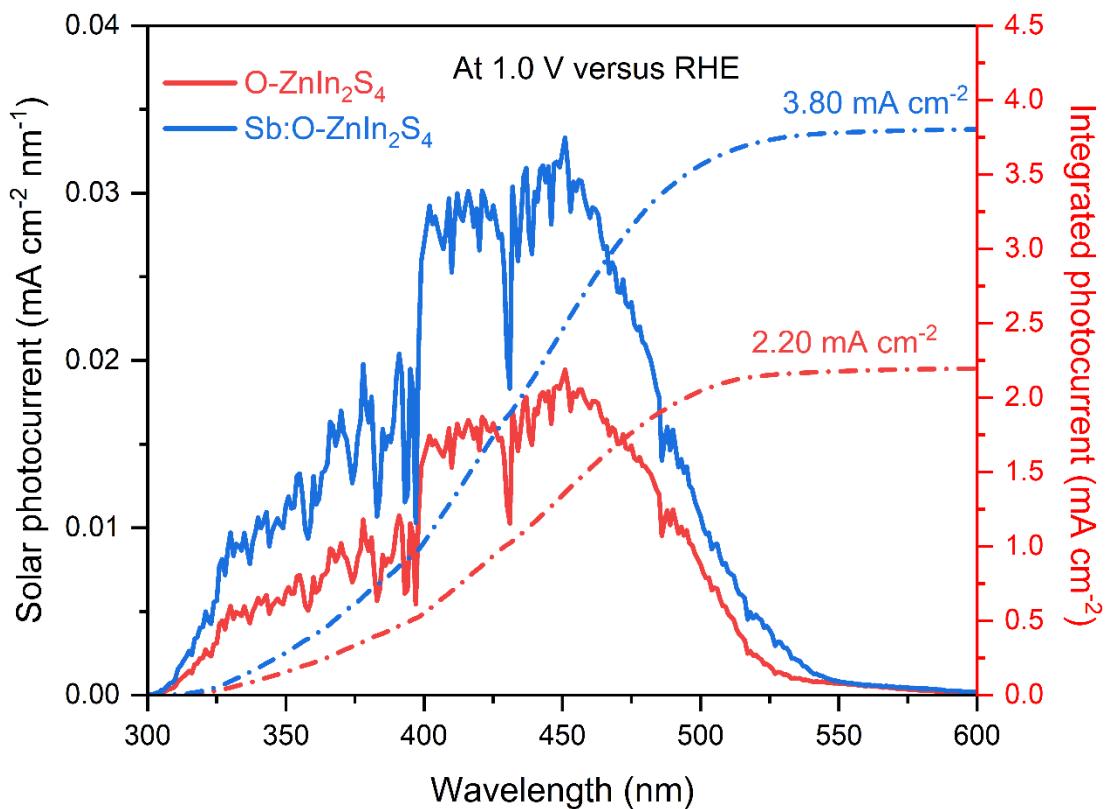

Fig. S21. (a) J - V curves of as-prepared ZnIn₂S₄ (sample #3 in panel b), O-ZnIn₂S₄ (sample #2 in panel c), and Sb:O-ZnIn₂S₄ (sample #3 in panel d) photoanodes measured in 0.5M Na₂SO₄ (pH 6.8) under chopped AM1.5G simulated sunlight (100 mW cm⁻²) with a scan rate of 10 mV s⁻¹. (b-d) Reproducibility of the chopped J - V curves measured for five independently prepared electrodes for each sample type, including (b) as-prepared ZnIn₂S₄, (c) O-ZnIn₂S₄, and (d) Sb:O-ZnIn₂S₄ photoanodes.

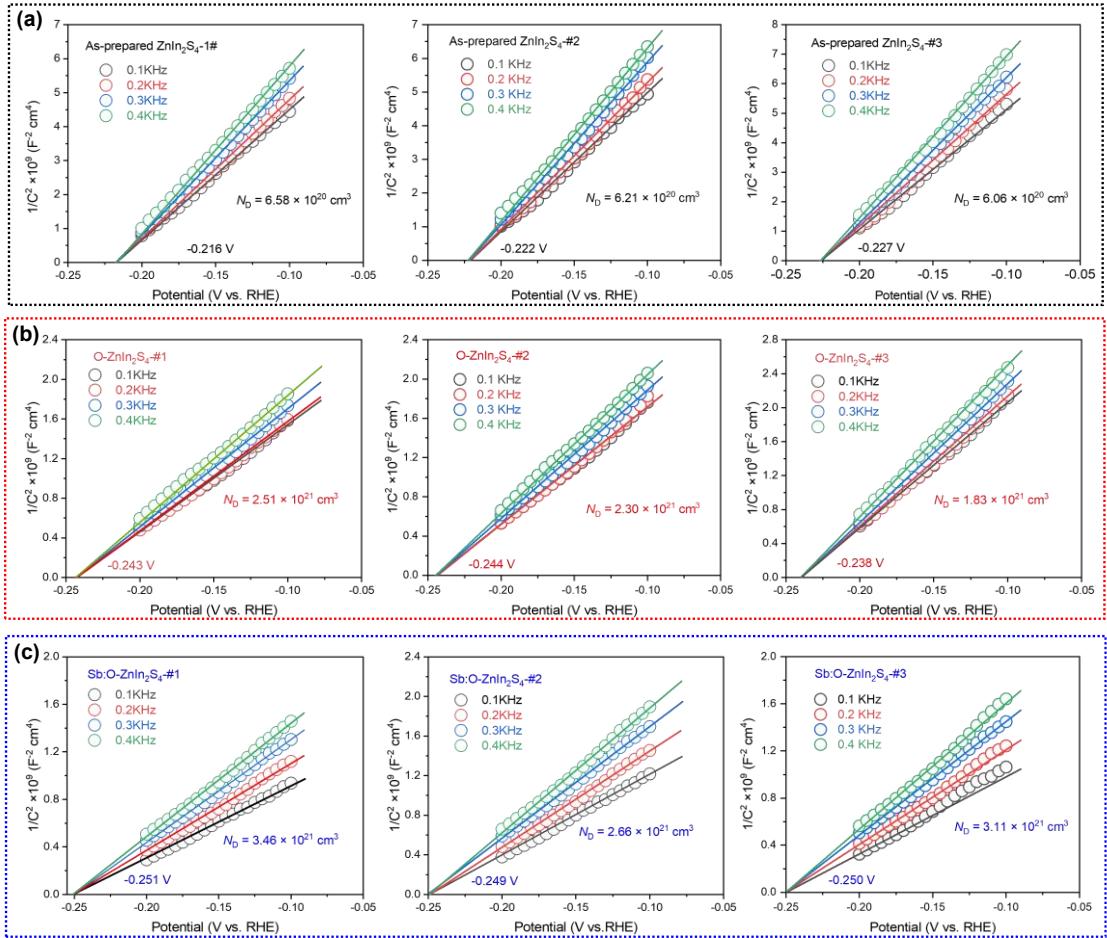

Fig. S22. *J-V* curves for Sb:O-ZnIn₂S₄ photoanodes with different Sb incorporation concentrations, measured in 0.5M Na₂SO₄ (pH 6.8) under continuous AM1.5G simulated sunlight (100 mW cm⁻²) with a scan rate of 10 mV s⁻¹.

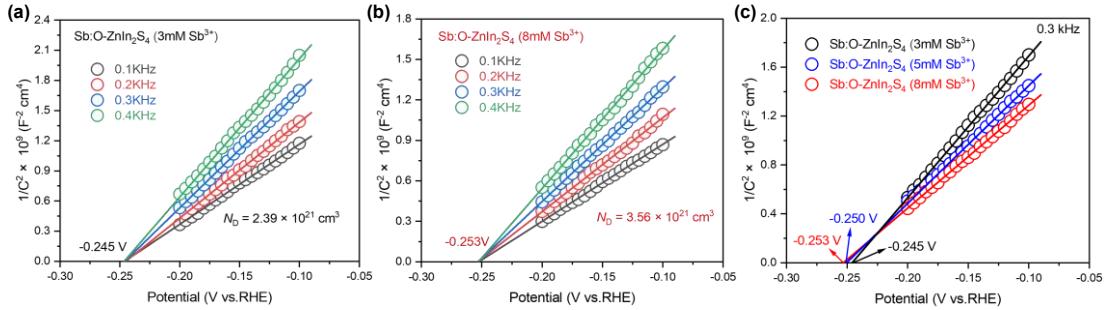

Fig. S23. Annealing temperature and time dependence of the PEC performance of O-ZnIn₂S₄ and Sb:O-ZnIn₂S₄ photoanodes measured in 0.5 M Na₂SO₄ (pH 6.8) under AM 1.5G illumination (100 mW cm⁻²). (a, b) *J-V* curves of photoanodes annealed at different temperatures. (c, d) *J-V* curves of photoanodes annealed for different durations. The optimal condition is 400 °C for 1 h. Lower temperature or shorter time results in insufficient lattice O incorporation, whereas higher temperature or longer time leads to excessive surface oxidation, consistent with the increased S-O contribution.

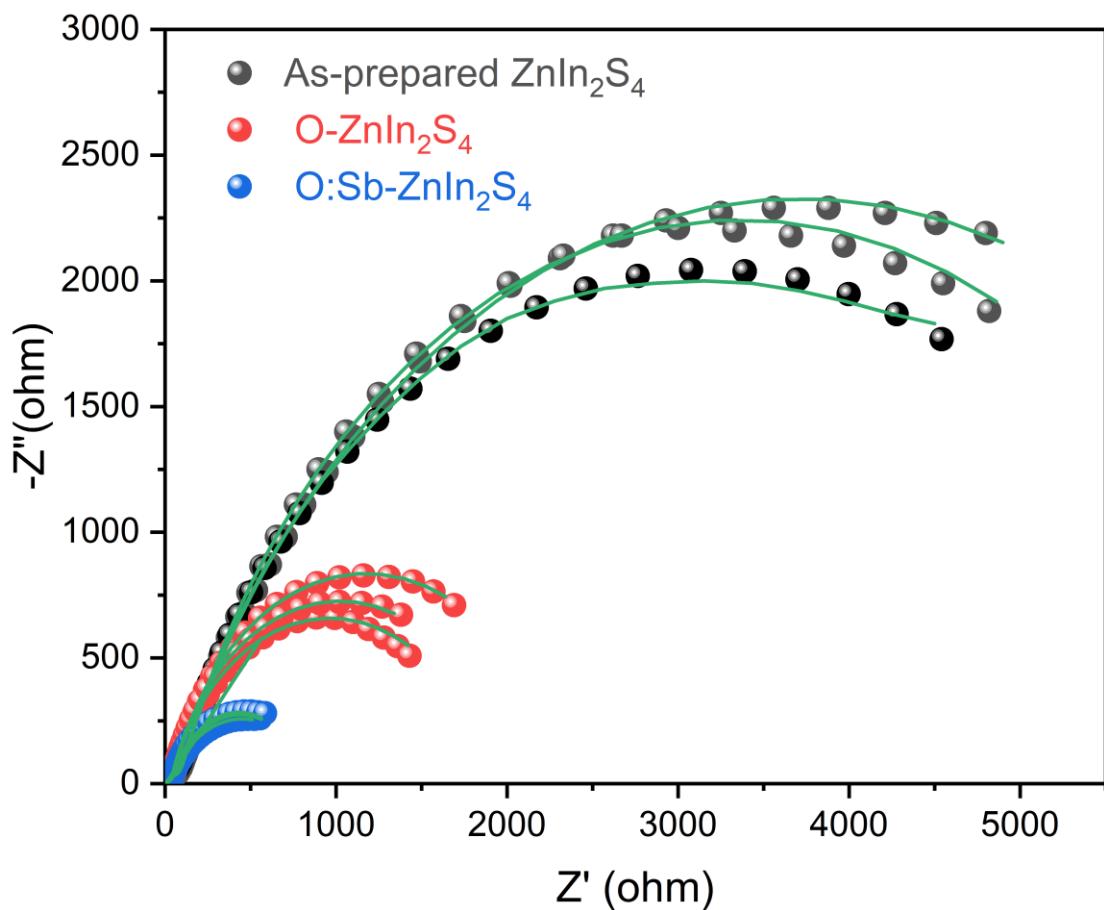

Fig. S24. (a-d) J - V curves of as-prepared ZnIn_2S_4 , $\text{O-ZnIn}_2\text{S}_4$, and $\text{Sb:O-ZnIn}_2\text{S}_4$ photoanodes measured under AM1.5G simulated sunlight (100 mW cm^{-2}) in commonly used electrolytes for sulfide-based photoelectrochemical testing, including $0.35 \text{ M Na}_2\text{SO}_3 + 0.25 \text{ M Na}_2\text{S}$ (pH 13.5) (a), $0.2 \text{ M Na}_2\text{S}$ (pH 13.0) (b), $0.5 \text{ M Na}_2\text{SO}_3$ (pH 9.8) (c), and 1 M KOH (pH 14) (d). (e-h) The corresponding chopped J - T curves were recorded in the same electrolytes at 1.0 V versus RHE under AM 1.5G illumination. Across all these electrolytes, the ZnIn_2S_4 -based photoanodes exhibit the same performance ranking as in neutral Na_2SO_4 , namely that O incorporation and subsequent Sb modification systematically enhance the PEC activity. Electrolytes containing hole scavengers (Na_2SO_3 and/or Na_2S) generally suppress surface hole accumulation and therefore mitigate oxidative attack on sulfide lattices, often leading to higher apparent photocurrents and improved short-term stability compared with a purely supporting electrolyte. By contrast, strongly alkaline media (KOH) can accelerate surface reconstruction and sulfide oxidation under anodic bias due to stronger nucleophilic/oxidizing conditions. Against this backdrop, the improved behavior of $\text{Sb:O-ZnIn}_2\text{S}_4$ could be rationalized by our spectroscopic evidence that Sb promotes lattice/near-lattice O incorporation while suppressing the formation of surface oxidized sulfur species.

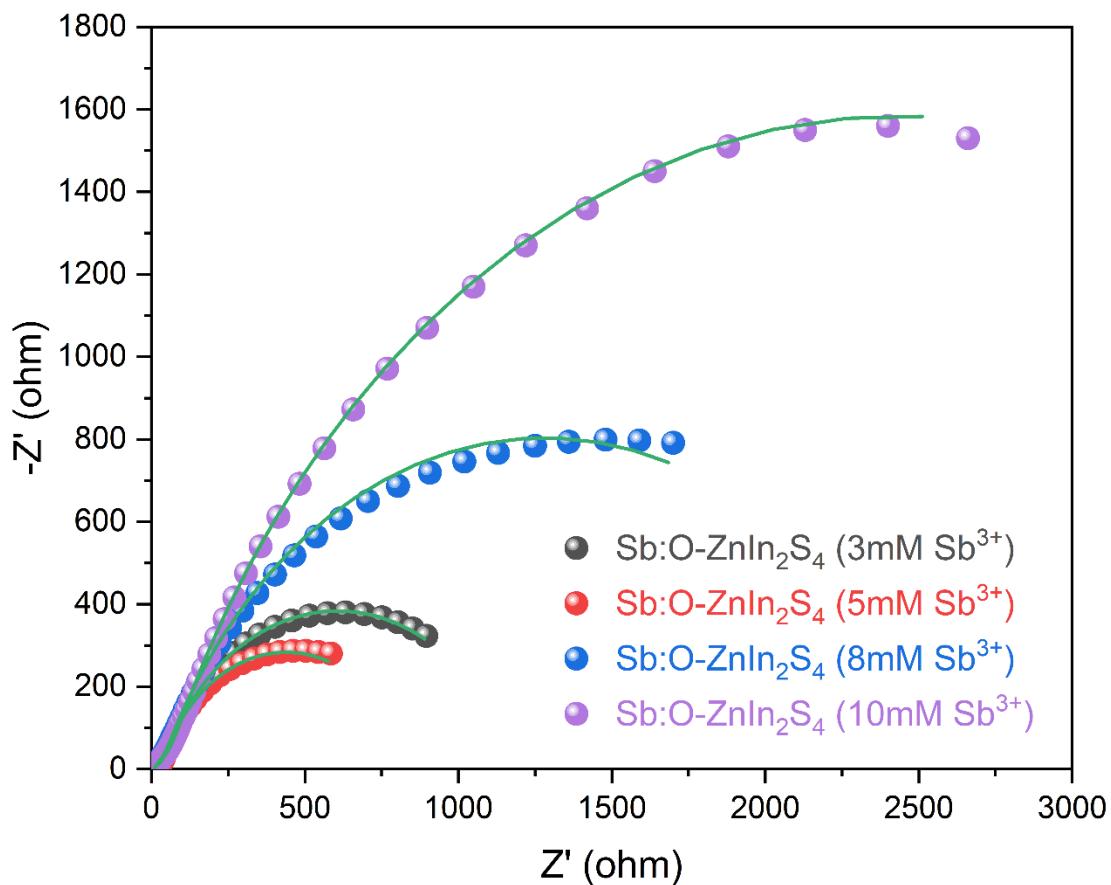

Fig. S25. Reproducibility of the PEC performance of ZnIn_2S_4 -based photoanodes. (a-c) J - V curves for batches of five samples are shown in (a) as-prepared ZnIn_2S_4 , (b) $\text{O-ZnIn}_2\text{S}_4$, and (c) $\text{Sb:O-ZnIn}_2\text{S}_4$ photoanodes. The J - V curves for the representative (champion) photoanodes under each condition are reported in **Fig. 5a**. (d) Statistical distribution of the ABPEs for the corresponding photoanodes. The average ABPEs and the standard deviations are shown in the box chart.

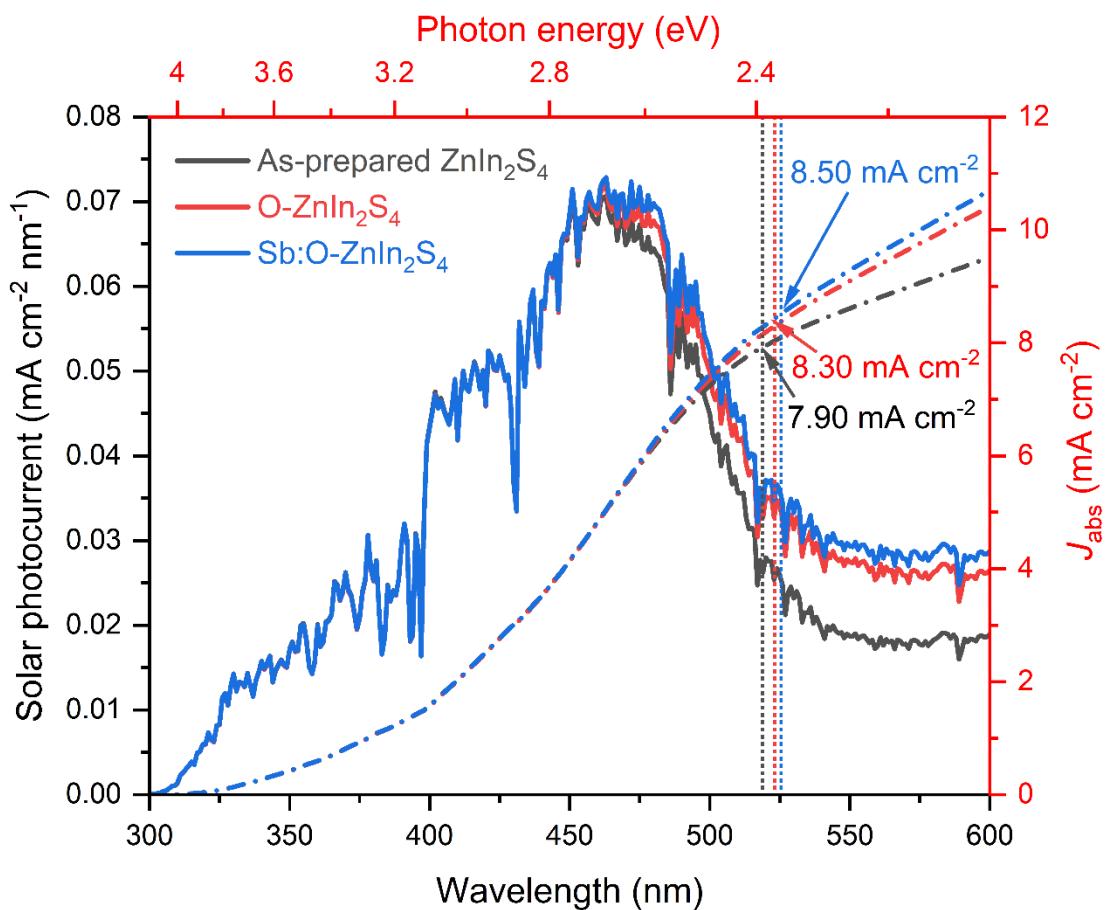

Fig. S26. Extended PEC stability tests of as-prepared ZnIn_2S_4 , $\text{O-ZnIn}_2\text{S}_4$, and $\text{Sb:O-ZnIn}_2\text{S}_4$ photoanodes measured in $0.5 \text{ M Na}_2\text{SO}_4$ electrolyte at 1.0 V vs. RHE. $J-T$ curves were recorded under chopped (a) and continuous (b) AM 1.5G illumination for 60 min. All photoanodes exhibit noticeable photocurrent decay on the time scale of tens of minutes. Under chopped illumination, the $\text{Sb:O-ZnIn}_2\text{S}_4$ photoanode retains $\sim 32\%$ of its initial photocurrent after 60 min, compared with $\sim 16\%$ for as-prepared ZnIn_2S_4 and $\sim 18\%$ for $\text{O-ZnIn}_2\text{S}_4$. Under continuous illumination, $\text{Sb:O-ZnIn}_2\text{S}_4$ maintains $\sim 12\%$ of the initial photocurrent after 60 min, whereas as-prepared ZnIn_2S_4 and $\text{O-ZnIn}_2\text{S}_4$ retain only $\sim 3\%$ and $\sim 6\%$, respectively. Overall, the $\text{Sb:O-ZnIn}_2\text{S}_4$ photoanode shows a slower decay rate and higher photocurrent retention than control samples under both illumination modes, indicating an improved resistance to photocorrosion on the same time scale.

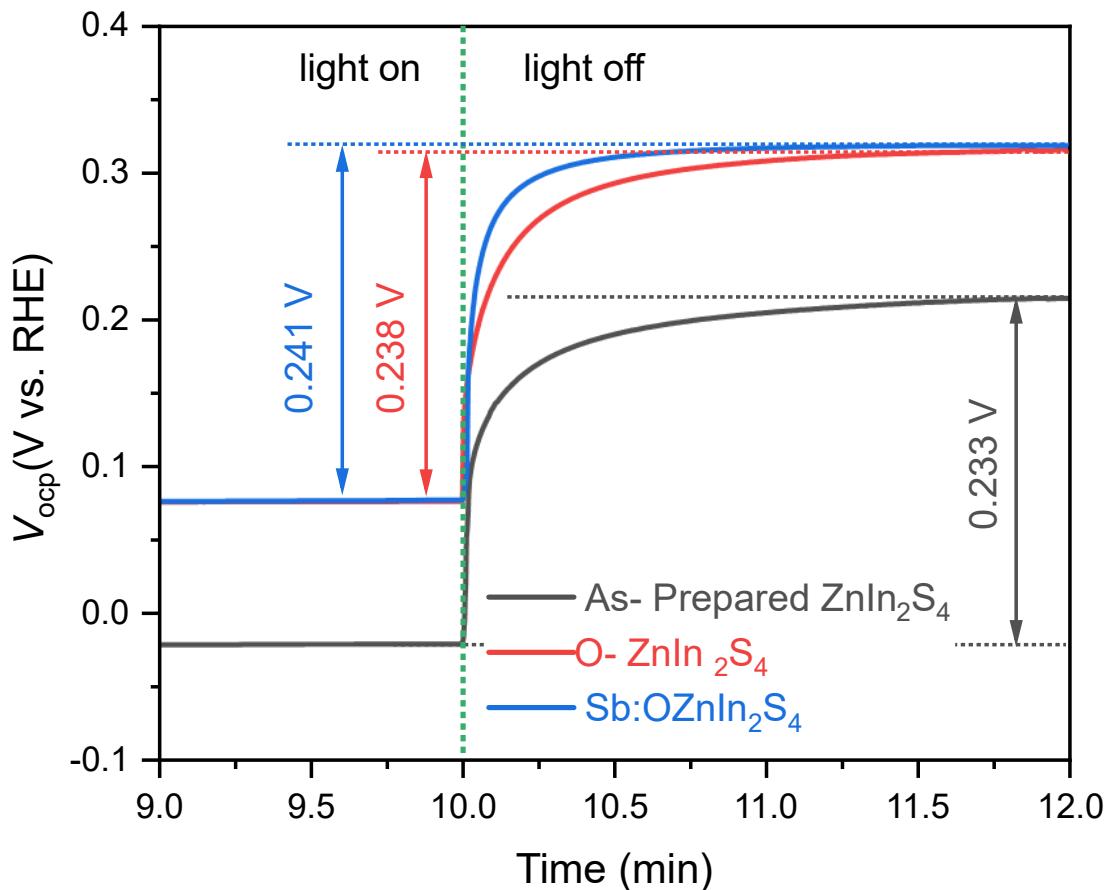

Fig. S27. Top-view SEM images for as-prepared ZnIn_2S_4 (a, d), $\text{O-ZnIn}_2\text{S}_4$ (b, e), and $\text{Sb:O-ZnIn}_2\text{S}_4$ (c, f) samples before (a-c) and after (d-f) a 10 min PEC test.

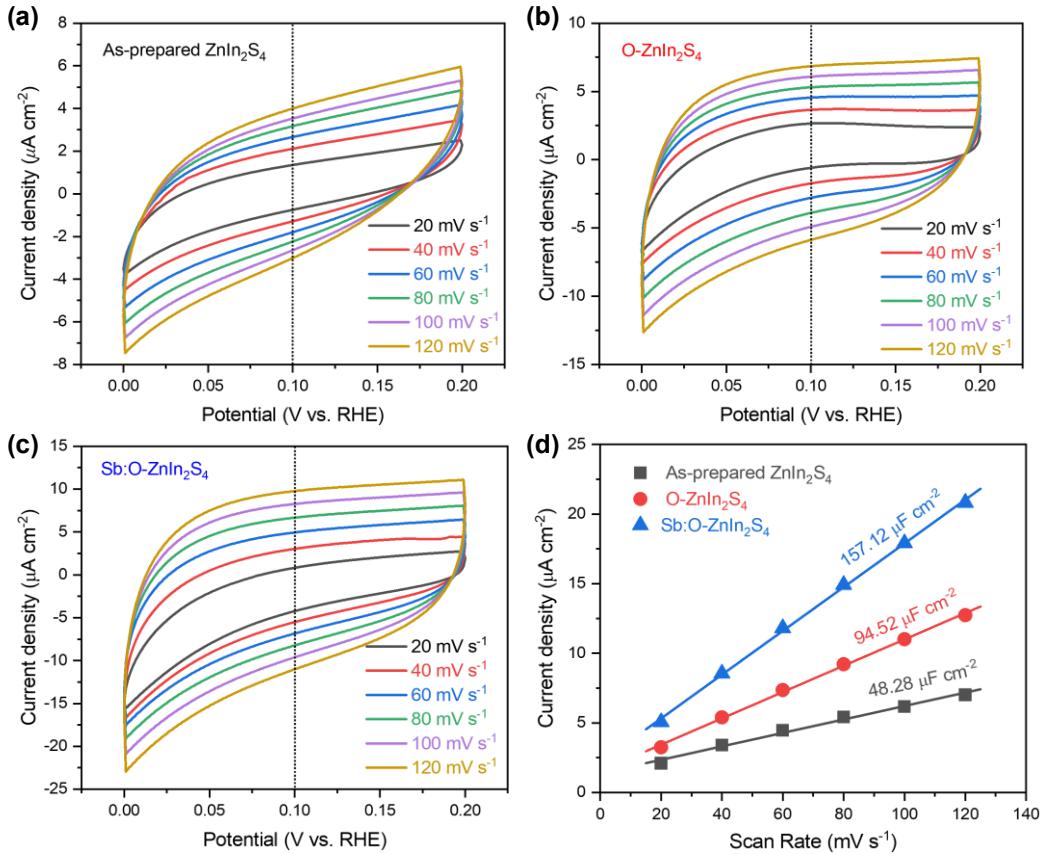

Fig. S28. HAXPES spectra of as-prepared ZnIn_2S_4 (a), $\text{O-ZnIn}_2\text{S}_4$ (b), and $\text{Sb:O-ZnIn}_2\text{S}_4$ (c) photoanodes recorded before and after a 10 min PEC test. After PEC operation, the chemical states of Zn and In remain essentially unchanged, whereas partial oxidation of sulfur species is detected. The S 2p spectra reveal an increased contribution of S-O species for all samples, with the most pronounced increase for as-prepared ZnIn_2S_4 , followed by $\text{O-ZnIn}_2\text{S}_4$. In contrast, $\text{Sb:O-ZnIn}_2\text{S}_4$ exhibits a markedly lower degree of sulfur oxidation, indicating that Sb incorporation mitigates surface sulfur oxidation under anodic conditions. Notably, lattice-related O 1s components and Sb species remain detectable after PEC testing, suggesting that the Sb-induced O incorporation is not rapidly lost during short-term PEC operation.


Fig. S29. Solar photocurrent spectra and integrated photocurrent curves for O-ZnIn₂S₄ and Sb:O-ZnIn₂S₄ photoanodes, calculated by multiplying the IPCE spectra (**Fig. 5d**) with the standard AM 1.5G spectrum (ASTM G173-03).


Fig. S30. Mott-Schottky plots of as-prepared ZnIn_2S_4 (a), $\text{O-ZnIn}_2\text{S}_4$ (b), and $\text{Sb:O-ZnIn}_2\text{S}_4$ (c) photoanodes, measured for three independently prepared samples in 0.5 M Na_2SO_4 electrolyte under dark conditions. The potential was scanned anodically at frequencies of 0.1, 0.2, 0.3, and 0.4 kHz with an AC amplitude of 15 mV. The lines show the fitting of the linear regions of the Mott-Schottky plots. From the interceptions of the lines with the x -axis, the flat-band potentials of the samples were obtained. The carrier concentration (N_D) in the samples was estimated from the slope (k_S) of the lines using $N_D = 2/(e\epsilon_0\epsilon_r k_S)$, where e is electron charge, ϵ_0 is vacuum permittivity, and ϵ_r is the dielectric constant of ZnIn_2S_4 (~ 4.7). At the frequency of 0.3 kHz, the N_D values for as-prepared ZnIn_2S_4 , $\text{O-ZnIn}_2\text{S}_4$, and $\text{Sb:O-ZnIn}_2\text{S}_4$ photoanodes were calculated to be $(6.28 \pm 0.27) \times 10^{20} \text{ cm}^{-3}$, $(2.21 \pm 0.35) \times 10^{21} \text{ cm}^{-3}$, and $(6.28 \pm 0.27) \times 10^{21} \text{ cm}^{-3}$.


Fig. S31. Mott-Schottky plots of Sb:O-ZnIn₂S₄ with varying Sb incorporation concentrations. With increasing Sb content, the flat-band potential gradually shifts cathodically and the N_D increases, which in theory should enhance PEC performance. However, the J - V curves in **Fig. S22** show that the PEC performance improves initially but deteriorates at higher Sb concentrations, likely because excessive Sb incorporation introduces defect levels that act as recombination centers, thereby impairing PEC activity.


Fig. S32. PEIS for as-prepared ZnIn_2S_4 , $\text{O-ZnIn}_2\text{S}_4$, and $\text{Sb:O-ZnIn}_2\text{S}_4$ photoanodes, measured for three independently prepared samples in 0.5M Na_2SO_4 electrolyte under AM 1.5G simulated sunlight. Green lines represent the fitted the Nyquist plot of the PEIS data using a two-RC-unit equivalent circuit.


Fig. S33. PEIS for $\text{Sb:O-ZnIn}_2\text{S}_4$ photoanodes with varying Sb incorporation concentrations measured in 0.5M Na_2SO_4 electrolyte under AM 1.5G simulated sunlight. Green lines represent the fitted the Nyquist plot of the PEIS data using a two-RC-unit equivalent circuit.

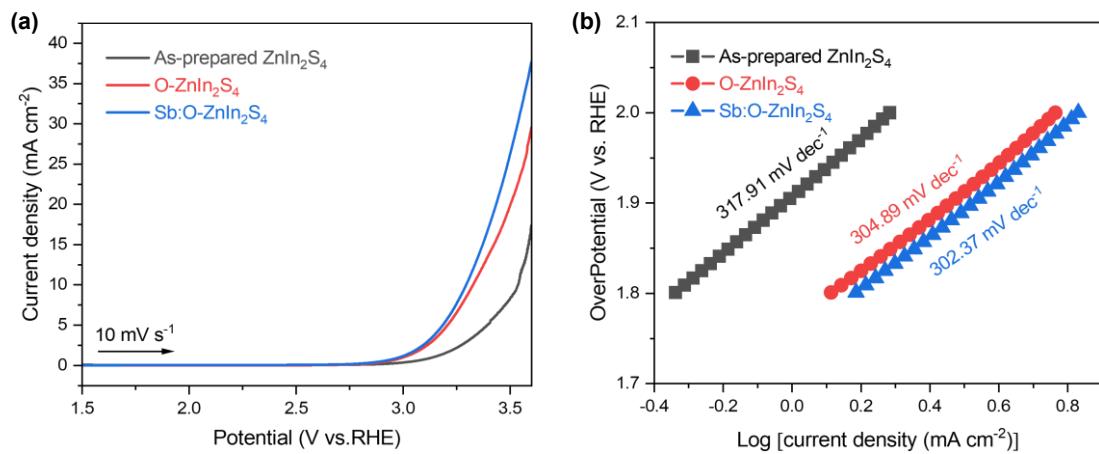

Fig. S34. Absorbed solar photocurrent spectra and absorption photocurrent (J_{abs}) curves for O-ZnIn₂S₄ and Sb:O-ZnIn₂S₄ photoanodes obtained by integrating the absorption spectra shown in **Fig. 4a** (assuming 100% absorbed photon-to-current conversion efficiency) with the AM 1.5G reference spectrum (ASTM G173-03).

Fig. S35. Open circuit potential (OCP) decay profiles for as-prepared ZnIn_2S_4 , O- ZnIn_2S_4 , and Sb:O- ZnIn_2S_4 photoanodes under illumination and in the dark. The measurements were conducted in 0.5M Na_2SO_4 electrolyte. After recording the OCP for 10 minutes, the AM 1.5G simulated sunlight was turned off to create significant charge recombination. Carrier lifetimes derived from OCP-decay curves in **Fig. 5i**, were ~ 0.27 s (as-prepared ZnIn_2S_4), ~ 0.10 s (O- ZnIn_2S_4), and ~ 0.086 s (Sb:O- ZnIn_2S_4). The accelerated decay kinetics upon light-off indicate suppressed charge trapping in the Sb:O- ZnIn_2S_4 , thereby promoting charge separation and enhances PEC activity.

Fig. S36. (a-c) Cyclic voltammograms of as-prepared ZnIn₂S₄ (a), O-ZnIn₂S₄ (b), and Sb:O-ZnIn₂S₄ (c) photoanodes recorded in 0.5 M Na₂SO₄ solution at various scan rates. (d) Difference between the cathodic and anodic charging current densities at 0.10 V vs. RHE plotted as a function of scan rate for the three photoanodes. The slope of the linear fitting corresponds to twice the double-layer capacitance (C_{dl}), which is used to estimate the electrochemically active surface area (ECSA). SEM analysis confirms that the nanosheet morphology is largely preserved after air annealing and subsequent Sb incorporation, indicating that the increased ECSA does not originate from geometric surface area enlargement but from chemical/electronic activation of surface states. O-related surface species introduced during air annealing enhance interfacial charge storage and provide additional adsorption/coordination sites for oxygenated intermediates, facilitating hole accumulation. Subsequent Sb incorporation further regulates these O-related surface species by suppressing sulfur oxidation and stabilizing electronically favorable surface states, as evidenced by increased C_{ss} , reduced R_{ct} , and enhanced η_{inj} . As a result, the enlarged ECSA of Sb:O-ZnIn₂S₄ reflects both a higher density of accessible active sites and improved interfacial reaction kinetics.

Fig. S37. (a) Dark J - V curves of as-prepared ZnIn₂S₄, O-ZnIn₂S₄, and Sb:O-ZnIn₂S₄ photoanodes measured in 0.5M Na₂SO₄ with a scan rate of 10 mV s⁻¹. (b) Corresponding Tafel plots. The progressively reduced Tafel slopes suggest improved interfacial charge-transfer kinetics after air annealing and subsequent Sb incorporation, consistent with the promoted O-related defect modulation and the enhanced PEC activity.

Table S1. Detailed HAXPES and XPS data analyzed using Thermo Fisher Scientific's Avantage software. The atomic ratios of elements in the samples were quantified based on the Zn 2p_{3/2}, In 3d_{5/2}, S 2p_{3/2}, Sb 3d_{5/2}, and the lattice O component of the O 1s peak. Sensitivity factors and background subtraction were automatically accounted for by the software during the quantification process.

Sample	Zn 2p _{3/2}		In 3d _{5/2}		S 2p _{3/2}				O 1s				Sb 3d _{5/2}		
	Position	Atomic (%)	Position	Atomic (%)	S ²⁻		S-O		O _{abs}		O _L		Position	Atomic (%)	
					Position	Atomic (%)	Position	Atomic (%)	Position	Atomic (%)	Position	Atomic (%)			
As-prepared ZnIn ₂ S ₄	1022.2	11.66	445.1	19.67	161.7	44.37	168.4	1.57	531.9 533.0	18.21 4.52	/	/	/	/	
O-ZnIn ₂ S ₄	1022.1	10.39	444.8	19.36	161.5	33.29	168.5	4.51	531.8 533.0	24.40 4.92	530.0	3.13	/	/	
Sb:O-ZnIn ₂ S ₄	1022.0	11.57	444.9	22.98	161.6	38.33	168.4	2.19	531.8 533.0	14.66 3.96	530.0	5.15	530.7	1.16	
Etching Time	0 s	1022.0	8.22	445.0	16.40	161.7	26.36	168.5	2.12	531.8 534.0	39.37 2.95	529.0	3.71	530.7	0.87
	60 s	1022.1	14.38	444.9	28.30	161.7	47.78	/	/	533.3	2.75	529.9	5.46	530.7	1.33
	180 s	1022.1	14.33	444.9	28.13	161.7	47.71	/	/	533.4	3.96	529.9	4.95	530.7	0.92
	360 s	1022.1	15.13	444.8	29.78	161.7	50.67	/	/	/	/	529.9	3.67	530.7	0.75
	480 s	1022.1	15.14	444.8	30.12	161.7	51.00	/	/	/	/	529.9	3.22	530.7	0.52

Table S2. Quantitative elemental compositions of the samples obtained from HAXPES and XPS data analysis.

Sample	Atomic ratios								
	In/Zn	S/Zn	[S+(S-O)]/Zn	(S-O)/[S+(S+O)]	O _L /(O _{abs} + O _L)	O _L /[S+O _L]	[S+ (S-O)+O _L]/Zn	Sb/[Sb+In]	
As-prepared ZnIn ₂ S ₄	1.69	3.80	3.94	0.034	0.00	/	3.94	/	
O- ZnIn ₂ S ₄	1.86	3.20	3.64	0.12	0.096	0.086	3.94	/	
Sb:O-ZnIn ₂ S ₄	1.99	3.32	3.50	0.054	0.22	0.12	3.95	0.048	
Etching Time	0 s	1.99	3.20	3.47	0.074	0.081	0.12	3.92	0.050
	60 s	1.97	3.32	3.32	0	0.67	0.10	3.70	0.045
	180 s	1.96	3.33	3.38	0	0.56	0.094	3.67	0.032
	360 s	1.97	3.35	3.35	0	1	0.068	3.59	0.025
	480 s	1.99	3.37	3.37	0	1	0.059	3.58	0.017

Table S3. Fitted parameters for the TRPL decay of different Sb:O-ZnIn₂S₄ samples.

The f_1 , f_2 , and f_3 are the fractional intensities; τ_1 , τ_2 , and τ_3 are the lifetimes; τ_{AV} is the intensity-weighted average lifetime, which is equal to $f_1\tau_1 + f_2\tau_2 + f_3\tau_3$; and χ^2 is the reduced chi-square value.

Sample	τ_1 (μs)	f_1	τ_2 (μs)	f_2	τ_3 (μs)	f_3	τ_{AV} (μs)	χ^2
Sb:O-ZnIn ₂ S ₄ (3mM SbCl ₃)	0.18	6.9%	1.24	22.4%	10.22	70.8%	7.52	1.313
Sb:O-ZnIn ₂ S ₄ (5mM SbCl ₃)	0.14	4.1%	1.21	15.6%	12.38	80.4%	10.15	1.823
Sb:O-ZnIn ₂ S ₄ (8mM SbCl ₃)	0.16	8.8%	1.13	25.0%	9.73	66.3%	6.74	1.351

Table S4. Direction-dependent effective masses of electrons and holes for as-prepared ZnIn₂S₄, O-ZnIn₂S₄, and Sb:O-ZnIn₂S₄ calculated at the band edges of the Brillouin zone and reported in units of the free-electron mass (m_0). The electron effective masses (m_e^*) and hole effective masses (m_h^*) were obtained by parabolic fitting of the CBM and the VBM dispersions shown in **Fig. 3g-i**, respectively, using $m^* = \hbar^2[\partial^2 E(k)/\partial k^2]$ ¹, where \hbar is the reduced Planck constant, k is the wave vector, and $E(k)$ are the energy of the electron at k .

Sample	Electron (m_e^*)		Hole (m_h^*)		
	$\Gamma \rightarrow M$	$\Gamma \rightarrow K$	$\Gamma \rightarrow M$	$\Gamma \rightarrow K$	$M \rightarrow K$
As-prepared ZnIn ₂ S ₄	0.08	0.06	0.28	0.29	/
O-ZnIn ₂ S ₄	0.10	0.07	0.72	/	2.18
Sb:O-ZnIn ₂ S ₄	0.23	0.26	0.14	0.12	/

Table S5. Total energies, corresponding formation energies (E_{form}) and atomic ratios of the DFT-optimized structural models

Sample	System	Atomic ratios	Model	Total energy (eV)	E_{form} (eV)
As-prepared ZnIn ₂ S ₄	O	—	—	-4.938941195	—
	S	—	—	-4.09156015125	—
	Monolayer ZnIn ₂ S ₄	—	—	-254.46214984	—
	Monolayer ZnIn ₂ S ₄	(In vacancy)/(In atom) = 0.1111	—	-242.09592033	—
O-ZnIn ₂ S ₄	O-ZnIn _{2-x} S _{4-y}	O/(S+O) = 0.0278	Model 1	-244.01293255	-1.06963117625
			Model 2	-243.68554889	-0.74224751625
			Model 3	-243.79843522	-0.85513384625
	2O-ZnIn _{2-x} S _{4-y}	O/(S+O) = 0.0556	Model 1	-245.59202831	-1.8013458925
			Model 2	-245.70489018	-1.9142077625
			Model 3	-245.73717717	-1.9464947525
			Model 4	-245.83417888	-2.0434964625

	3O-ZnIn _{2-x} S _{4-y}	O/(S+O) = 0.0833	Model 1	-247.58591166	-2.94784819875
			Model 2	-247.55596800	-2.91790453875
			Model 3	-247.53594780	-2.89788433875
			Model 4	-247.67108386	-3.03302039875
Sb:O-ZnIn ₂ S ₄	Sb-ZnIn _{2-x} S _{4-y}	Sb/(Sb + In) = 0.058 (In vacancy)/(In + Sb) = 0.0556	–	-249.26941755	–
	Sb:O-ZnIn _{2-x} S _{4-y}	Sb/(Sb + In) = 0.058 (In vacancy)/(In + Sb) = 0.0556 O/(S+O) = 0.0278	Model 1	-251.14319366	-1.02639506625
			Model 2	-251.41535738	-1.29855878625
			Model 3	-251.58192351	-1.46512491625
	Sb:2O-ZnIn _{2-x} S _{4-y}	Sb/(Sb + In) = 0.058 (In vacancy)/(In + Sb) = 0.0556 O/(S+O) = 0.0556	Model 1	-253.67024087	-2.7060612325
			Model 2	-253.36013253	-2.3959528925
			Model 3	-253.82141074	-2.8572311025
			Model 4	-253.48723374	-2.5230541025

	Sb:3O- ZnIn _{2-x} S _{4-y}	Sb/(Sb + In) = 0.058 (In vacancy)/(In + Sb) = 0.0556 O/(S+O) = 0.0833	Model 1	-255.84976218	-4.03820149875
		Model 2	-255.49665738	-3.68509669875	
		Model 3	-255.66091664	-3.84935595875	
		Model 4	-255.57791935	-3.76635866875	
	Sb:4O- ZnIn _{2-x} S _{4-y}	Sb/(Sb + In) = 0.058 V _{In} /(In + Sb) = 0.0556 O/(S+O) = 0.1111	Model 1	-257.36352856	-4.704586835
		Model 2	-257.62890228	-4.969960555	
		Model 3	-257.70546358	-5.046521855	
		Model 4	-257.65246262	-4.993520895	

Table S6. Bandgap and band positions of different ZnIn₂S₄ samples determined by UPS spectra and UV-vis absorption spectra.

Sample	E_{BG} (eV)	E_F (eV) vs. E_{vac}	E_{VB} (eV) vs. E_{vac}	E_{CB} (eV) vs. E_{vac}
As-prepared ZnIn ₂ S ₄	2.39	-4.04	-6.09	-3.70
O-ZnIn ₂ S ₄	2.37	-3.94	-6.06	-3.69
Sb:O-ZnIn ₂ S ₄	2.36	-3.72	-5.89	-3.53
Sb:O-ZnIn ₂ S ₄ (inside)	~2.36	-3.87	-6.04	-3.68

Table S7. PEC water oxidation performances of recently reported ZnIn₂S₄-based photoanodes (2014-2025).

Structure	Synthesis method	Photocurrent (mA cm ⁻² at 1.23 V vs. RHE)	HC-STH	Electrolyte	Ref.
ZnIn ₂ S ₄ (Ov, SO ₄ ²⁻)	Hydrothermal + Na ₂ S treatment	3.52	1.7%	NaH ₂ PO ₄ /Na ₂ HPO ₄	10
ZnIn ₂ S ₄ /CdS/ZnO	Hydrothermal + ALD	3.48	1.42%	Na ₂ SO ₄	11
ZnIn ₂ S ₄ /Cu ₂ S/ NiFe-LDH	Hydrothermal + ion exchange	1.56	0.224%	Na ₂ SO ₄	12
TiO ₂ /Cu-ZnIn ₂ S ₄	Secondary hydrothermal	2.87	0.51%	Na ₂ S	13
Pt/ZnIn ₂ S ₄ /Co-Pi	Hydrothermal + electrochemical deposition	0.91	0.39%	Na ₂ SO ₃ /Na ₂ S	14
In ₂ S ₃ /ZnIn ₂ S ₄	Hydrothermal	1.22	0.56%	Na ₂ SO ₄	15
Mg:ZnIn ₂ S ₄ /Co:ZnIn ₂ S ₄	Hydrothermal	0.92	0.129%	Na ₂ SO ₄	16
MoS ₂ /ZnIn ₂ S ₄ /NiFeOOH	Hydrothermal + photo-deposition	0.74	0.093%	Na ₂ SO ₄	17
ZnIn ₂ S ₄ /Cu ₂ O/NiFeOOH/Ag	Hydrothermal + electrochemical deposition + chemical deposition+ chemical water bath	1.22	0.21%	Na ₂ SO ₄	18
ZnIn ₂ S ₄ homojunction	Hydrothermal	0.53	0.035%	Na ₂ S/Na ₂ SO ₃	19
ZnIn ₂ S ₄ /Au/PB	Hydrothermal + photo-deposition + electrochemical deposition	0.42	Not reported	Na ₂ SO ₄	20
Sb ₂ S ₃ /ZnIn ₂ S ₄ /Cu ₂ S	Hydrothermal + immersion	2.81	0.744%	Na ₂ SO ₄	21
Fe ₂ O ₃ /Ti ₂ C ₃ T _x /ZnIn ₂ S ₄	Hydrothermal + spin-coating	2.62	0.87%	Na ₂ SO ₄	22

Au-ZnIn ₂ S ₄	Hydrothermal + electrochemical deposition	0.52	0.26%	Na ₂ SO ₄	23
ZnIn ₂ S ₄ /SnS ₂	Hydrothermal + ALD	4.57	1.67%	Na ₂ SO ₄	24
Mg:O-ZnIn ₂ S ₄	Hydrothermal + low-temperature water bath	4.91	1.61%	Na ₂ SO ₄	25
ZnIn ₂ S ₄ /Fe-In-S	Hydrothermal + ALD	5.35	1.41%	Na ₂ SO ₄	26
ZnIn ₂ S ₄ -CoNiP	Hydrothermal	4.77	0.82%	Na ₂ SO ₄	27
ZnIn ₂ S ₄ /P-ZnIn ₂ S ₄	Hydrothermal + Ar annealing	6.34	0.65%	Na ₂ SO ₄	28
S _v -ZIS/N-TiO ₂	Hydrothermal	4.77	0.48%	Na ₂ SO ₄	29
ZnIn ₂ S ₄ /TiO ₂	spin coating + electrodeposition	0.8 at 0.5 V vs. Ag/AgCl	Not reported	Na ₂ SO ₄	30
Ni-ZnIn ₂ S ₄	Hydrothermal	0.25 at 0.9 V vs. Ag/AgCl	0.014%	Na ₂ SO ₄	31
SiO ₂ /ZnIn ₂ S ₄ / TiO ₂	Hydrothermal	0.786 at 0.1 V vs. Ag/AgCl	0.48%	Na ₂ S/ Na ₂ SO ₃	32
Ni(OH) ₂ /CdS/ZnIn ₂ S ₄ /TiO ₂	Hydrothermal + immersion	1.8 at 0.1 V vs. Ag/AgCl	0.93%	Na ₂ S/ Na ₂ SO ₃	33
ZnIn ₂ S ₄ /TiO ₂	Hydrothermal	1.2 at 1.5 V vs. RHE	0.96%	Na ₂ S/ Na ₂ SO ₃	34
ZnO/RGO/ZnIn ₂ S ₄	Hydrothermal	1.43 at 0.5 V vs. Ag/AgCl	0.46%	Na ₂ SO ₄	35
TiO ₂ /Cd-doped ZnIn ₂ S ₄	two-stage anodization approach + Hydrothermal	606.2 μ A cm ⁻²	0.38%	Na ₂ SO ₄	36
O:V _{Zn} :V _S -ZnIn ₂ S ₄ /Al ₂ O ₃	Hydrothermal + ALD	4.63	Not reported	Na ₂ SO ₃	37
Sb:O-ZnIn₂S₄	Hydrothermal	4.30	2.00%	Na₂SO₄	This work

Table S8. Fitted values of CPE parameters (including magnitude parameter Y_0 and exponent n representing the degree of deviation from ideal capacitive behavior), resistances (R_s , R_{trap} , and R_{ct}), and effective capacitance (C) obtained from EIS measurements.

Sample	R_s ($\Omega \text{ cm}^2$)	CPE _{bulk}			R_{trap} ($\Omega \text{ cm}^2$)	CPE _{ss}			R_{ct} ($\Omega \text{ cm}^2$)	$\frac{R_{\text{trap}}}{R_{\text{trap}} + R_{\text{ct}}}$
		$Y_{0,1}$ ($\Omega^{-1} \text{ cm}^{-2} \text{ s}^n$)	n_1	C_{bulk} ($\mu\text{F cm}^{-2}$)		$Y_{0,2}$ ($\Omega^{-1} \text{ cm}^{-2} \text{ s}^n$)	n_2	C_{ss} ($\mu\text{F cm}^{-2}$)		
As-prepared	3.94	(1.64 \pm 6.22) $\times 10^{-4}$	0.67 \pm 0.01	4.41 \pm 1.76	56.74 \pm 25.71	(6.78 \pm 1.87) $\times 10^{-5}$	0.80 \pm 0.03	27.62 \pm 11.21	2133.15 \pm 639.84	0.025 \pm 0.004
ZnIn ₂ S ₄	\pm 0.47									
O-ZnIn ₂ S ₄	3.44 \pm 0.63	(8.53 \pm 2.01) $\times 10^{-5}$	0.72 \pm 0.03	4.42 \pm 0.96	18.53 \pm 9.55	(1.16 \pm 1.47) $\times 10^{-4}$	0.85 \pm 0.02	38.24 \pm 3.77	626.03 \pm 113.14	0.029 \pm 0.017
Sb:O-ZnIn ₂ S ₄ (5mM SbCl ₃)	2.67 \pm 0.46	(4.20 \pm 3.20)$\times 10^{-5}$	0.76 \pm 0.07	5.78 \pm 0.69	9.32 \pm 2.25	(3.32 \pm 1.15)$\times 10^{-4}$	0.74 \pm 0.07	58.22 \pm 3.29	225.59 \pm 5.34	0.040 \pm 0.007
Sb:O-ZnIn ₂ S ₄ (3mM SbCl ₃)	2.77	9.58 $\times 10^{-5}$	0.74	5.29	9.54	3.24 $\times 10^{-4}$	0.75	46.75	326.33	0.028
Sb:O-ZnIn ₂ S ₄ (8mM SbCl ₃)	3.39	1.85 $\times 10^{-4}$	0.68	5.74	25.63	1.01 $\times 10^{-4}$	0.78	18.65	761.05	0.033
Sb:O-ZnIn ₂ S ₄ (10mM SbCl ₃)	3.42	9.19 $\times 10^{-5}$	0.71	3.41	29.12	1.00 $\times 10^{-4}$	0.77	17.37	1469.71	0.019

Supplementary References

- 1 G. Kresse and J. Furthmuller, *Phys. Rev. B*, 1996, **54**, 11169.
- 2 G. Kresse and J. Furthmuller, *Comput. Mater. Sci.*, 1996, **6**, 15-50.
- 3 G. Kresse and D. Joubert, *Phys. Rev. B*, 1999, **59**, 1758.
- 4 K. B. John P. Perdew and M. Ernzerhof, *Phys. Rev. B*, 1996, **77**, 3865.
- 5 K. Lee, É. D. Murray, L. Kong, B. I. Lundqvist and D. C. Langreth, *Phys. Rev. B*, 2010, **82**, 081101.
- 6 Y. Xiao, J. Fu, Y. Pihosh, K. Karmakar, B. Zhang, K. Domen and Y. Li, *Chem. Soc. Rev.*, 2025, **54**, 1268-1317.
- 7 P. Wang, Z. Shen, Y. Xia, H. Wang, L. Zheng, W. Xi and S. Zhan, *Adv. Funct. Mater.*, 2018, **29**, 1807013.
- 8 A. Zaban, M. Greenshtein and J. Bisquert, *ChemPhysChem*, 2003, **4**, 859-864.
- 9 H. Wang, Y. Xia, H. Li, X. Wang, Y. Yu, X. Jiao and D. Chen, *Nat. Commun.*, 2020, **11**, 3078.
- 10 W. Xu, W. Gao, L. Meng, W. Tian and L. Li, *Adv. Energy Mater.*, 2021, **11**, 2101181.
- 11 W. Xu, W. Tian, L. Meng, F. Cao and L. Li, *Adv. Energy Mater.*, 2021, **11**, 2003500.
- 12 Z. Hao, R. Wang, L. Zhang, H. Sheng, Y. Li, B. Dong and L. Cao, *Chem. Eng. J.*, 2023, **468**, 143568.
- 13 G. Wang, X. Sun, C. Xia, H. Li, B. Dong and L. Cao, *Colloids Surf. A*, 2024, **689**, 133656.
- 14 M. Zhou, Z. Liu, Q. Song, X. Li, B. Chen and Z. Liu, *Appl. Catal. Environ.*, 2019, **244**, 188-196.

15 H. Geng, P. Ying, K. Li, Y. Zhao and X. Gu, *Appl. Surf. Sci.*, 2021, **563**, 150289.

16 H. Qian, Z. Liu, J. Ya, Y. Xin, J. Ma and X. Wu, *J. Alloys Compd.*, 2021, **867**, 159028.

17 H. Qian, Z. Liu, B. Zhang, J. Li and J. Ya, *ChemCatChem*, 2021, **13**, 1940-1950.

18 Z. Hu, R. Wang, C. Han and R. Chen, *J. Colloid Interface Sci.*, 2022, **628**, 946-954.

19 H. Qian, Z. Liu, Z. Guo, M. Ruan and J. Ma, *J. Alloys Compd.*, 2020, **830**, 154639.

20 L. Wang, M. Zheng, L. Lai, R. Wang, T. Qian, L. Zhang, W. Younas, G. Mao and Q. Liu, *Eur. J. Inorg. Chem.*, 2024, **27**, e202400007.

21 Z. Hao, R. Wang, L. Zhang, X. Liu, H. Li, X. Meng, C. Gu, C. Xia, B. Dong and L. Cao, *Surf. Interfaces*, 2024, **51**, 104667.

22 S. Zhang, P. Du, H. Xiao, Z. Wang, R. Zhang, W. Luo, J. An, Y. Gao and B. Lu, *Angew. Chem. Int. Ed.*, 2023, **136**, e202315763.

23 F. Ye, W. Liu, C. Han, Y. Zhao, P. Liu and H. Wang, *Cryst. Growth Des.*, 2024, **25**, 101-108.

24 S. Li, L. Meng, W. Tian and L. Li, *Adv. Energy Mater.*, 2022, **12**, 2200629.

25 Y. Huang, J. He, W. Xu, T. Liu, R. Chen, L. Meng and L. Li, *Adv. Energy Mater.*, 2024, **14**, 2304376.

26 L. Meng, J. He, X. Zhou, K. Deng, W. Xu, P. Kidkhunthod, R. Long, Y. Tang and L. Li, *Nat. Commun.*, 2021, **12**, 5247.

27 C. Wang, W. Chen, S. Sun, H. Zhang, H. Zhou and S. Li, *Adv. Funct. Mater.*, 2024, **34**, 2313706.

28 Y. Wu, S. Yao, G. Lv, Y. Wang, H. Zhang, P. Liao and Y. Wang, *J. Catal.*, 2021,

401, 262-270.

29 Z. Bao, Y. Jiang, Z. Zhang, J. Lv, W. Shen, J. Dai, J. Wang, J. Cai and Y. Wu, *J. Mater. Chem. A*, 2024, **12**, 15902-15913.

30 I. B. Assaker, M. Gannouni, J. B. Naceur, M. A. Almessiere, A. L. Al-Otaibi, T. Ghrib, S. Shen and R. Chtourou, *Appl. Surf. Sci.*, 2015, **351**, 927-934.

31 B. Fan, Z. Chen, Q. Liu, Z. Zhang and X. Fang, *Appl. Surf. Sci.*, 2016, **370**, 252-259.

32 M. A. Mahadik, P. S. Shinde, M. Cho and J. S. Jang, *Appl. Catal. Environ.*, 2016, **184**, 337-346.

33 M. A. Mahadik, P. S. Shinde, H. H. Lee, M. Cho and J. S. Jang, *Sol. Energy Mater. Sol. Cells*, 2017, **159**, 475-487.

34 Q. Liu, H. Lu, Z. Shi, F. Wu, J. Guo, K. Deng and L. Li, *ACS Appl. Mater. Interfaces*, 2014, **6**, 17200-17207.

35 Z. Bai, X. Yan, Z. Kang, Y. Hu, X. Zhang and Y. Zhang, *Nano Energy*, 2015, **14**, 392-400.

36 Z. Li, K. H. Ng, S. Xu, Y. Zhang, Y. Lei, J. Huang and Y. Lai, *Chemosphere*, 2022, **307**, 135758.

37 L. Meng, D. Rao, W. Tian, F. Cao, X. Yan and L. Li, *Angew. Chem. Int. Ed.*, 2018, **57**, 16882-16887.