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Fig. S1. SEM image of the as-synthesized PSNLGCN powder fired at 1000 °C for 3 h.
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Fig. S2. XRD patterns of PSNLGCN, BZCYYb, and their mixture (mass ratio of 1:1)

powders after being fired at 1050 °C for 5 h in air.
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Fig. S3. XRD refinement of PSNLGCN after the treatment in 30% H,O-air at 650 °C

for 100 h.
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Fig. S4. Comparison of Sr 3d XPS profiles of (a-b) PSNLGCN and (c-d) PSCN

powders before and after the treatment in 30% H,O-air at 650 °C for 100 h.
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Fig. S5. The Arrhenius plots of the conductivities of PSNLGCN in air with 0-30% H,O.
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Fig. S6. (a) Co 2p XPS spectra of PSNLGCN and PSCN; (b) Ni 2p XPS spectra of

PSNLGCN and PSCN; (c) Pr 3d XPS spectra of PSNLGCN and PSCN.
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Fig. S7. EIS of symmetric cells with syn-PSNLGCN, PSCN, and PrsO;;+syn-PD-
PSNLGCN air electrodes. (a) syn-PD-PSNLGCN, (b) PSCN, and (c) PrsO;;+syn-

PSNLGCN in dry air; (d) the corresponding R;, values.
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Fig. S8. Temperature dependence of the R, of PSCN, PSNLGCN, PD-PSNLGCN and

PrsO;,+PD-PSNLGCN air electrodes.
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Fig. S9. DRT analysis of PSNLGCN, PSCN, syn-PD-PSNLGCN, and PrsO;;+syn-PD-

PSNLGCN in dry air at 700 °C.
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Fig. S10. EIS plots of PSNLGCN and PSCN at 650 °C in 30% H,0-70% N».
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Fig. S11. EIS curves of PSNLGCN air electrode at 650 °C (a) at 0 h and 100 h in dry
air, and at 100 h and 200 h in 3% H,O air; (b) at 200 h and 300 h in 10% H,O air, and
at 300 h and 400 h in 20% H,O air; (c) EIS curves of PSNLGCN and PSCN air

electrodes at 650 °C at 400 h and 500 h in 30% H-O air.
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Fig. S12. The microstructure of the symmetrical cell with PSNLGCN composite

electrode after 500 h long-term test under varying steam pressures.
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Fig. S13. Electrochemical performance of RPCC with the PSCN air electrode. (a) I-
V-P curves of the cell measured in FC mode at 600-700 °C; (b) The I-V curves of the

cell in EC mode at 600-700 °C.



Fig. S14. Cross sectional SEM images of the cell with the PSNLGCN air electrode after
the stability testing. (a) Overall view; (b) Air electrode-electrolyte-fuel electrode; (c)

Air electrode.
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Fig. S15. The EDS elemental mapping of the PSNLGCN air electrode after the stability

test.
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Fig. S16. DFT calculation model for (a) PD-PSNLGCN; (b) perfect configuration

PSNLGCN; (c)PSCN.

Table S1. Refinement parameters of PSNLGCN oxide calcinated at 950 °C for 5 h in

air.
Element Label X y z Occupancy
Phase 1 (PD-PSNLGCN, I4/mmm, a=b=3.798 A c=12.369 A, 87.1 wt%)

Nd Nd1 0 0 0.361185 0.237
Pr Prl 0 0 0.361185 0.0525
La Lal 0 0 0.361185 0.237
Sr Srl 0 0 0.361185 0.237
Gd Gd1 0 0 0.361185 0.237
Ni Nil 0 0 0 0.5
Co Col 0 0 0 0.5
0] 0O1 0 0.5 0 1

0] 02 0 0 0.163916 1

Phase 2 (PrsO,;, Fm-3m, a=b=c=5.4482 A, 12.9 wt%)
Pr Prl 0 0 0 1
0] 01 0.25 0.25 0.25 0.995
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Table S2. The atomic ratio of each element in as-synthesized PSNLGCN, measured by

inductively coupled plasma optical emission spectroscopy (ICP-OES).

Sample Pr Sr Nd La Gd Co Ni

PSNLGCN 0401 0.399 0.400 0.401 0.400 0.499 0.500

Table S3. Refinement parameters of PSNLGCN powder at 650 °C for 100 h in wet air

(30% H,0).
R Ry Occupanc
Composition b 42 Spacegroup a(A) b(A) c(A) paney
(%) (%) (Wt%)
PD-
499 7.60 1.633 [4/mmm 3.796 3.796 12.361 86.4
PSNLGCN

PrsO1; 499 7.60 1.633 Fm-3m 5449 5449  5.449 13.6
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Table S4. The R, of symmetrical cells with PSNLGCN and other high-performance

RP-type electrodes reported recently.

Air electrode Electrolyte  Temperature (°C) Re Reference
(Q cm?)
700 0.089
La3Ni,O7.5 (LNO) BZCY 620 02> !
600 0.83
550 2.1
700 0.15
SrsFe; 57n507.5 (SFZ) BZCY 650 0.47 2
600 1.3
Sr3Fe; 3Cog,Mo0g 507.5- 700 0.96
BaZry1Cep 7Y 02055 BZCY 650 1.56 3
(SFCMO-BZCY) 600 3.1
700 0.14
Pr; 519 sNiO4.5 (PSN) BZCY 60 029 4
600 0.58
550 1.35
700 0.09
LaSr, ,Co; sFe; 50105 (LSCF2.7) ~ BZCYYb 620 02 5
600 0.44
550 1.2
700 0.08
Pry 4Sry4Ndj 4Lag4Gdy4CoysNiy, BZCYYb 650 0.16 This work
5045 (PSNLGCN) 600 0.33
550 0.89
700 0.16
Pr;,Sr)3C095Nip504:5 (PSCN)  BZCYYb 650 32 rhis work
600 0.72
550 1.78

BZCY: BaCeo.7Zr0.1Y0.203_5

BZCYYb: BaZr0,1Ceo,7Y0,1Ybo‘103,5
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Table S5. Performance (FC mode) comparison of the PSNLGCN with others RP-type

air electrode previously reported.

Electrolyte
Temperature PDD
Air electrode thickness Reference
(°C) (Wcem2)
(pm)
700 0.34
Lag 6Srp 4FeO;.5-La; 5Srg gNiO45 (LSF- 20 650 0.24 6
LSN) 600 0.18
550 0.1
St3Fe; 3C002Mog s07.5-BaZr 1Ceo7Y 02055 700 039
20 650 0.29 3
(SFCMO-BZCY)
600 0.19
700 0.46
La; 5SrpgNiOg4+5 (LSN) 15 650 0.33 7
600 0.22
700 0.46
Sr3Fe; sZny 5075 (SFZ) 100 650 0.31 2
600 0.15
700 0.56
LaSr, 7Co; sFe; 50195 (LSCF2.7) 28 620 052 5
600 0.39
550 0.24
700 0.73
Lay 6S1p4Cug¢Nig404+5 (LSCN) 10 650 0.5 8
600 0.27
700 0.398
La;Ni; ¢Co9 4075 (LNCO) / 650 0.293 K
600 0.215
700 1.1
Pry 4Sry4Ndj 4Lay4Gdy4Co¢sNipsO4+5 10 650 0.71 This
(PSNLGCN) 600 0.39 work
550 0.18
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Table S6. Performance (EC mode) comparison of the PSNLGCN with others RP-type

air electrode previously reported.

Current
Electrolyte ) )
. ] Air electrode- Temperature density
Air electrode thickness ) Reference
feeding gas (°O) (A cm™?) at
(um)
13V
PI'QNiO4+5-BaZI'0.2C€()'6Y0,20375 (PNO- 19 40% Air/ 650 0.6 10
BZCY) 60% H,O 600 0.3
) 700 1.96
Pr, ;BagsNiO4:5 (PBN) 15 40% Air/ 650 122 1
11 7Bag 3Ni .
1.7 0.3 4+8 60% Hzo
600 0.83
) 700 1.37
. 80% Air/
Lal,ZSro,gN104 (LSN) 15 650 0.83 7
20% H,O
600 0.42
St sLagFe,0; 5 (SLF) 20 80% Air/ 700 1.08 i
12 gLag,Fe, 07—
PR 20% H,0 600 0.46
Nd; 9Bag |NiO4sF 50% Air/ 700 137
ag.1Ni ir,
1.9830,1N1044550.05 75 ° 650 0.75 3
(NBNF) 50% H,0
600 0.36
) 700 1.4
StEwFe; sCop 075 (SEFC) 15 90% Airl 650 0.7 14
rEu,Fe; sCo _ .
2ke1 80002075 10% H,0
600 0.4
Pry 4Sr(4Ndg 4Lag4Gdj4CoysNig 5O 700 2.9
0.4570.4Ndo.4La.4Gdo 4C09.5N1p sO4+ 70% Air/ This
5 10 650 1.5
30% H,0 work
(PSNLGCN) 600 0.81
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