1	Supporting Information
2	
3	3D Printed Polycaprolactone/Phosphoester-Modified Poly (amino acids)-
4	Graphene Oxide Scaffold for Meniscal Regeneration
5	
6	Zeping Yu, ^{abc} Fei Xing, ^a Jianshu Li, ^{ejg,} Wenli Zhang, ^{ab} Hong Duan, ^{*ab} Jian Li ^{*ab} , and
7	Yan Xiong ^{*ab}
8	
9	^a Sports Medicine Center, West China Hospital, Sichuan University, Chengdu 610041,
10	
11	^o Department of Orthopedics and Orthopedic Research Institute, West China Hospital,
12	Sichuan University, Chengdu 610041, China
13	^c Department of Pediatric Orthopedics, West China Second University Hospital,
14	Sichuan University, Chengdu, 610041, China
15	^d Department of Pediatric Surgery, Laboratory of Stem Cell and Tissue Engineering,
16	State Key Laboratory of Biotherapy, West China Hospital, Sichuan University,
17	Chengdu 610041, China.
18	^e Med-X Center for Materials, Sichuan University, Chengdu 610041, China
19	^f College of Polymer Science and Engineering, State Key Laboratory of Polymer
20	Materials Engineering, Sichuan University, Chengdu 610065, China
21	^g State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan
22	University, Chengdu 610041, P. R. China
23	
24	
25	*Corresponding author
26	Email Address: luyibingli@163.com (Yan Xiong); hxlijian.china@163.com (Jian Li);
27	and duanhong1970@126.com (Hong Duan).
28	
29	
30	
	l

Materials: Antibodies used in this study were summarized as follows. Primary 1 antibody COL I (67288-1-lg, Proteintech, USA), COL II (NB600-844, Novus 2 Biologicals, USA), Alexa Fluor® 647-conjugated CD206 (MCA2235A647, BIO-RAD, 3 USA), iNOS(22226-1-AP, Proteintech, USA), CD31(11265-1-AP, Proteintech, USA). 4 Secondary antibody CoraLite488-conjugated Goat Anti-Rabbit IgG (H+L) (SA00013-5 1, Proteintech, USA), CoraLite594 - conjugated Goat Anti-Rabbit IgG (H+L) 6 (SA00013-4, Proteintech, USA). YSFluorTM 488 Donkey Anti-Rat lgG (H+L) 7 (33106ES60, YEASEN, China) was used for Immunofluorescence double staining of 8 RAW264.7. HRP-conjugated Goat Anti-Mouse IgG (H+L) (SA00001-1, Proteintech, 9 USA) was used for immunohistochemical staining. CD206 Monoclonal Antibody 10 (Clone # MR6F3, PE-conjugated, eBioscience, USA). CD86 Monoclonal Antibody 11 (Clone # GL1; APC-conjugated, eBioscience, USA). 12 13 **Experimental Section** 14 15 Effect of PCL/P-P-GO scaffold on macrophage-mediated angiogenesis in vitro 16 All experiments in this section were conducted with three duplicates for each group. 17 18 Conditioned medium (CM) preparation: CM was obtained by co-culture of 19 different scaffolds with macrophages for 48 h. 20 21 Wound scratch assay: HUVECs (8×10^5 per well) were seeded in 6-well plates. 22 Once confluent, the monolayer was wounded with a 200 μ L pipette tip, aided by a 23 straightedge, and the wells were rinsed three times with PBS before incubation with 24 CM for 24 hours. Wound closure was documented at 0 and 24 hours using a Leica 25 DMi8 inverted fluorescence microscope, and the healing ratio was determined using 26 ImageJ software. 27 28 29 Transwell assay: To determine the migratory potential of HUVECs induced by the scaffolds, a Transwell assay was conducted with PCL, PCL/PE-m-PAAs, and PCL/P-30

31 P-GO. A 200 μ L suspension containing 2 × 10⁴ HUVECs in serum-free DMEM was

1 placed in the upper compartment of a 24-well Transwell plate (8 µm pore size,

2 Corning, USA), with the lower compartment receiving 600 µL of complete medium

3~ and the respective scaffolds. The control group had 600 μL of complete medium in

4 the lower chamber without scaffolds. After 4-h incubation, migrated cells were fixed

5 using 4 % paraformaldehyde (Biosharp, China) for 15 min followed by staining with

6 crystal violet solution (Solarbio, China) for 5 min and calculated using Image J.

7

8 **Cell tube formation assessment:** For the tube formation assay, 96-well plates were

9 pre-coated with 50 μ L of Matrigel (Corning, USA), followed by the seeding of

10 HUVECs at 2×10^4 cells/well. Cultured for 6 hours under different conditions, the

11 assay evaluated tube formation by quantifying nodes, branch counts, and total tube12 lengths.

13

Immunofluorescence Staining: HUVECs were fixed with 4% paraformaldehyde and 14 permeabilized with 0.1% Triton X-100 in PBS for 30 minutes. They were then 15 blocked with 5% BSA (Sigma, USA) for 1 hour before being incubated with a CD31 16 antibody overnight at 4°C. After three PBS washes, cells were incubated with 17 CoraLite488-conjugated goat anti-rabbit secondary antibody for 1 hour. Following 18 further PBS rinses, DAPI staining was applied. Images were captured using a 19 fluorescence microscope (Nikon, Japan), and semi-quantitative MFI analysis was 20 conducted with ImageJ. 21

1 Supplementary results:

- 2 Fig. S3 The designed 3D model with circumferentially and radially oriented fibers,
- 3 which simulated the natural collagen fiber arrangement within the native meniscus.

- 1
- - .

2 Fig. S5 Degradation rate of the PCL and PCL/PE-m-PAAs scaffolds containing

3 Fig. S7 ELISA analysis of GAG of BMCs on various scaffolds (n = 3; #, p < 0.05
4 compared with any other group; *, p < 0.05; **, p < 0.01).

- .

4	Fig. S8	Transwell	migration	assay	of SMSCs	treated	with	various	scaffolds	for	24 h.
---	---------	-----------	-----------	-------	----------	---------	------	---------	-----------	-----	-------

4 Fig. S9 Transwell analysis of migrated SMSCs of scaffolds (n = 3; ns, no significance;

Cont	rol	LPS	PCL	PCL/PE-m-PAA	s PCL/P-P-GO
iNOS			i interiori i interiori i interiori i interiori		
CD206					
DAPI					
Merge					100 μm
LPS -		+	+	+	+

3 Fig. S10 Immunofluorescence staining a of M1 (iNOS) and M2 (CD206) in LPS-

4	stimulated RAW264.7	cells	co-incubating	with	different	scaffolds.
---	---------------------	-------	---------------	------	-----------	------------

Fig. S11 MFI of (A) M2 (CD206) and (B) M1 (iNOS) in LPS-stimulated RAW264.7
cells co-incubating with different scaffolds (n = 3; ns, no significance; #, p < 0.05
compared with any other group; *, p < 0.05; **, p < 0.01; ***, p < 0.001).

2 Fig. S12 (A) Flow cytometry results of macrophages expressing CD86 and CD206 after 3 treatment with different scaffolds. The antibodies of CD86 (PE channel) and CD206 4 (APC channel) were employed to specifically label M1 macrophages and M2 5 macrophages, respectively. (B) Quantitative analysis of M/M2 ratio (n = 3; ns, no 6 significance; ***, p < 0.001).

- **Fig. S1**4 H&E staining images of the different scaffolds implanted in the subcutaneous
- 4 muscular tissue of rabbits.

2 Fig. S15 Representative immunofluorescence images of (A) M1 (iNOS) and (B) M2

3 (CD206) macrophages in the knee synovium of rats one-month post-implantation of

4 various scaffolds.

2 Fig. S16 MFI of (A) M2 (CD206) and (B) M1 (iNOS) macrophages in the knee

3 synovium of rats one-month post-implantation of various scaffolds (n = 3; ns, no

4 significance; #, p < 0.05 compared with any other group; *, p < 0.05; ***, p < 0.001).

2 Fig. S17 (A) Representative immunofluorescence images and (B) MFI of CD31 in the
3 knee synovium of rabbits after 6 months post-implantation of various scaffolds (n = 3;
4 ns, no significance; **, p < 0.01; ***, p < 0.001).

	Ta	ble S1 Tł	he primer sets used in RT–PCR				
Gene name		me	Primers (5' to 3')				
COL	I F	orward	CCTGCTGGTCCTGCTGGTC				
COL	I R	leverse	TATGCCTCTGTCGCCCTGTTC				
COL	II F	orward	CACGCTCAAGTCCCTCAACAAC				
OL	II R	leverse	TCTATCCAGTAGTCACCGCTCTTC				
SOX	9 F	orward	GCTCCAGCCTCTATTCCACC				
SOX	9 R	Reverse	TGGTGAGCTGTGTGTACACC				
Aggro	ecan F	orward	TGGAGAAGCCCTTGCATCTG				
Aggro	ecan R	Reverse	AGCATAGGCAGATGTCTCGC				
GAPI	OH F	orward	CCATCACCATCTTCCAGGAG				
GAPI	OH R	leverse	GATGATGACCCTTTTGGCTC				