Supporting information

Compiling Modules of Photosensitizers and Quaternary Phosphonium Blocks into Materials' Networks Independently by co-Polymerization Strategy: An Effective Way to Fabricate Antimicrobial Agents to Against Drug Resistance

Jiawei Lv, Cheng Zeng, Richao Shen, Shuangyu Dong, Yong Li, Sanbao Wang, Hongting Fan, Haowen Huang, Zhiwang Yang, Ziqiang Lei* and Hengchang Ma*

Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University. Lanzhou 730070, P.R. China. E-mail: mahczju@hotmail.com (Ma H.)

Content

1. ¹ H, ¹³ C and ³¹ P NMR spectra of compounds	S3
2. FT-IR spectrum of compounds	S18
3. Density functional theory (DFT) calculation	S20
4. Fluorescence quantum yield	S24
5. Zone of inhibition	S27
6. Minimum inhibitory concentration (MIC)	S28
7. Morphological changes of bacteria	S30
8. Cell imaging	S34
9. Gel permeation chromatography test	S35
10. Lower critical solution temperature (LCST) test	S36
10. Thermogravimetric Analysis (TGA) test	S37
11. Antibacterial positive control test	S38

1. ¹H, ¹³C and ³¹P NMR spectra of compounds.

-9.83 -7.71 -7.71 -7.70 -7.75

Figure S1. ¹H NMR spectrum of Th-TPA-CHO measured in CDCl₃ at

Figure S2. ¹³C NMR spectrum of Th-TPA-CHO measured in CDCl₃ at

Figure S3. ¹H NMR spectrum of TPA-Th-CHO measured in CDCl₃ at

Figure S4. ¹³C NMR spectrum of TPA-Th-CHO measured in CDCl₃ at

Figure S5. ¹H NMR spectrum of Vba measured in CDCl₃ at room

Figure S6. ¹H NMR spectrum of TPAs-1 measured in CDCl₃ at room

Figure S7. ¹³C NMR spectrum of TPAs-1 measured in CDCl₃ at room

Figure S8. ¹H NMR spectrum of TPAs-2 measured in CDCl₃ at room

Figure S9. ¹³C NMR spectrum of TPAs-2 measured in CDCl₃ at room

Figure S10. ¹H NMR spectrum of P⁺-1 measured in CDCl₃ at room

Figure S11. ¹H NMR spectrum of P⁺-4 measured in CDCl₃ at room

Figure S12. ¹H NMR spectrum of P⁺-8 measured in CDCl₃ at room

7.1.0 7.1.1 7.

Figure S13. ¹H NMR spectrum of P⁺-Ph₃ measured in DMSO-*d6* at room

Figure S14. ¹H NMR spectrum of Poly(TPAs-2&P⁺-4) measured in

DMSO- d_6 at room temperature.

Figure S15. ³¹P NMR spectrum of Poly(TPAs-2&P⁺-4) and P⁺-4

measured in DMSO-d6 at room temperature.

2. FT-IR spectrum of compounds

Figure S16. FT-IR spectra of PNIPAM, Poly(TPAs-1) and Poly(TPAs-2)

(KBr tablet).

Figure S17. FT-IR spectra of Poly(TPAs-2&P+-4) (KBr tablet).

3. Density functional theory (DFT) calculation

and SOC values of TPAs-1.

Figure S19. Singlet and triplet energy levels, ΔE_{ST} values,

and SOC values of TPAs-2.

Figure S20. The calculated molecular length of TPAs-1.

Figure S21. The calculated molecular length of TPAs-2.

Figure S22. Dihedral angle of C-C=C-C in TPAs-1.

Figure S23. Dihedral angle of C-C=C-C in TPAs-2.

Figure S24. The dipole moment and electrostatic distribution of TPAs-1

and TPAs-2.

4. Fluorescence quantum yield

Figure S25. Fluorescence quantum yield of TPAs-1.

Figure S26. Fluorescence quantum yield of TPAs-2.

Figure S27. Fluorescence quantum yield of Poly(TPAs-2&P⁺-4).

5. Zone of inhibition

Figure S28. Inhibition zone of Poly(TPAs-2&P⁺-4) against four kinds of bacteria at different concentrations (The numbers 1, 2, 3 and 4 in the figure represent 70, 50, 30 and 0 mg/mL respectively).

6. Minimum inhibitory concentration (MIC)

Figure S29. The absorbance of E. coli (A), S. aureus (B), P. aeruginosa

(C) and E. faecalis (D) under different concentrations of

Poly(TPAs-2&P⁺-4).

Figure S30. Absorbance of bacteria at 600 nm at different concentrations

of Poly(TPAs-2&P⁺-4).

7. Morphological changes of bacteria

Figure S31. Morphological changes of E. coli before and after

Figure S32. Morphological changes of *S. aureus* before and after

Figure S33. Morphological changes of *P. aureginosa* before and after

Figure S34. Morphological changes of *E. faecalis* before and after

8. Cell imaging

Figure S35. The co-staining poly(TPAs-2&P⁺-4) with Mito Tracker

Green FM to HeLa cells.

9. Gel permeation chromatography test

Figure S36. GPC analysis of Poly(TPAs-2&P⁺-4) in acetonitrile using RI

detection.

10. Lower critical solution temperature (LCST) test

Figure S37. The transmittance of Poly(TPAs-2&P⁺-4) (Conc.: 50 mg/mL) with the increase of temperature under DMSO and DMSO/water mixture

(1:50 v/v).

10. Thermogravimetric Analysis (TGA) test

Figure S38. Thermogravimetric (TG) and derivative thermogravimetric (DTG) curves of Poly(TPAs-2&P⁺-4) under nitrogen atmosphere.

11. Antibacterial positive control test

Figure S39. The antibacterial effects of Poly(TPAs-2&P⁺-4) and

benzalkonium chloride at the same working concentration (50 μ g/mL)

under dark and light conditions.