Supplementary Information (SI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2025

Figure S1. FTIR absorbance curves of 35AM65VP anhydrate gel with 6 mg curcumin after exposure of different times.

Figure S2. FTIR absorbance curves of 35AM65VP anhydrate gel with 9 mg curcumin after exposure of different times.

Figure S3. FTIR absorbance curves of 35AM65VP anhydrate gel with 12 mg curcumin after exposure of different times.

Figure S4. FTIR absorbance curves of 35AM65VP anhydrate gel with 15 mg curcumin after exposure of different times.

Figure S5. FTIR absorbance curves of 35AM65VP anhydrate gel with 18 mg curcumin after exposure of different times.

Figure S6. Schematic illustration of a 25 kg weight object loading of four cubic 35AM65VP anhydrated gels.

Figure S7. The height varying data after hydration of 35AM65VP anhydrated gel for a period of times.

Figure S8. SEM photos of cell co-culturing printing model at different views. (A) front view, (B) side view, and (C) detailed photo of (B).

Figure S9. SEM photos of 35AM65VP hydrogel after incubation with HEUVECs for 3 day and 7 days.

	σ_b (MPa)	λ(%)	E(MPa)
10AM90VP	9.6±1	10.5±0.55	80.2±7.5
20AM80VP	17.5±2.5	9.5±0.45	217.1±15
30AM70VP	45.4±3.7	8.0±0.4	592.8±45
35AM65VP	70.0±5.2	$7.7{\pm}0.4$	1043.3±47.5
70AA30VP	16.1±1.9	6.3±0.3	267.3±17.4
50AA50VP	35.2±4.4	8.3±0.375	473±30
30AA70VP	43.7±4.9	6.8±0325	674.7±45

Table S1. The mechanical parameter of anhydrous gels.

Table S2. The mechanical parameter of hydrogels.

	σ_b (MPa)	λ(%)	E(MPa)
10AM90VP	0.01 ± 0.004	-	$0.05{\pm}0.01$
20AM80VP	$0.03{\pm}0.005$	-	$0.16{\pm}0.04$
30AM70VP	0.1 ± 0.01	-	0.13 ± 0.04
35AM65VP	0.1 ± 0.01	-	0.25 ± 0.05
70AA30VP	0.33 ± 0.04	-	1.03 ± 0.1
50AA50VP	0.34 ± 0.04	-	1.33 ± 0.5
30AA70VP	0.39 ± 0.04	43±2	2.4±0.2

PS: "-" represents that data were not measured.

tensile/compressive strength and specific resolution of recent published articles.					
REF	Preparation	Material	E kpa	Tensile/com	Specific
	technique			pressive	resolutio
				strength kpa	n µm
This	Digital light	35AM75VP	1043000	70000	1.5
work	process 3D	anhydrate gel			
	printing				
This	Digital light	35AM75VP	250	100	1.5
work	process 3D	hydrogel			
	printing				
1	extrusion printing	Laponite and alginate	~8000	~8000	~700
2	stereolithographic	poly(ethylene glycol)	500	150	1000
	printing	dimethacrylate			
		(PEGDMA)			
3	extrusion printing	MXene and	25	120	500
		PEDOT:PSS			
4	3D and 4-axis	Gelatin, alginate, and	10	8	400
	bioprinting	tannic acid			
5	extrusion printing	albumen/alginate/gel	-	200	1000
		atin			

Table S3. Statistics of preparation technique, material, elastic modulus (E), tensile/compressive strength and specific resolution of recent published articles.

6	Embedded 3D	Gelatin Methacryloyl	25	40	150
	Bioprinting				
7	extrusion printing	alginate (ALG),	17	300	1000
		methylcellulose			
		(MC), and			
		polyacrylic acid			
		(PAA), Fe3O4			
8	extrusion printing	multidomain peptides	4	4	250
9	extrusion printing	Sodium alginate and	5	5	1000
		methylcellulose			
10	inkjet printing	Saponified GelMA	25	25	100
	with a spray-	and sodium alginate			
	coating technique	-			
11	extrusion printing	Sodium alginate,	40	250	820
		Agar, acrylamide			
		(AAm)			
12	embed a long-	Alginate, Collagen	400	50	400
	fiber for extrusion	Ink, and Gelatin			
	printing	Support Bath			
13	extrusion printing	cellulose nanocrystal,	-	100	520
		methoxy pectin			
14	two-photon	commercially	-	-	7
	polymerization	available 2PP ink			
15	extrusion printing	gelatine	160	80	500
		methacrylate/Laponit			
		e			
16	extrusion printing	alginate, two-	-	1.7	300
		dimensional layered			
		double hydroxide			
17	lithographic	PEG-SH, GelMA,	60	-	50
	biofabrication				
18	extrusion printing	xanthan	130	6	200
		gum/cellulose			
		nanocrystal			
19	extrusion printing	Polyelectrolyte	-	1610	500
20	extrusion printing	polysaccharide	-	100	500
		(alginate)-tannic acid			
		(TA)-protein			
21	extrusion printing	PVA, TA	-	1200	800
22	Digital light	Poly(acrylamide)	100	25	7
	process 3D	PEGDA, TPO			
	printing				

PS: "-" represents that data were not given.

Reference

1. Munoz-Perez, E.; Perez-Valle, A.; Igartua, M.; Santos-Vizcaino, E.; Hernandez, R. M., High resolution and fidelity 3D printing of Laponite and alginate ink hydrogels for tunable biomedical applications. *Biomater. Adv.* **2023**, *149*, 213414.

 Hsiao, L. C.; Badruddoza, A. Z. M.; Cheng, L.-C.; Doyle, P. S., 3D printing of self-assembling thermoresponsive nanoemulsions into hierarchical mesostructured hydrogels. *Soft Matter* 2017, *13* (5), 921-929.

Liu, J.; McKeon, L.; Garcia, J.; Pinilla, S.; Barwich, S.; Möbius, M.; Stamenov, P.; Coleman, J. N.;
 Nicolosi, V., Additive Manufacturing of Ti3C2-MXene-Functionalized Conductive Polymer Hydrogels
 for Electromagnetic-Interference Shielding. *Adv. Mater.* 2021, *34* (5).

4. Khatun, M. R.; Bhattacharyya, A.; Gunbayar, M.; Jo, Y. O.; Noh, I., Gelatin-alginate hydrogel for near-field electrospinning assisted 3D and 4-axis bioprinting. *Carbohydr. Polym.* **2025**, *348*.

5. Liu, S.; Hu, Q.; Shen, Z.; Krishnan, S.; Zhang, H.; Ramalingam, M., 3D printing of self-standing and vascular supportive multimaterial hydrogel structures for organ engineering. *Biotechn. Bioeng.* 2021, *119* (1), 118-133.

Ning, L.; Mehta, R.; Cao, C.; Theus, A.; Tomov, M.; Zhu, N.; Weeks, E. R.; Bauser-Heaton, H.;
 Serpooshan, V., Embedded 3D Bioprinting of Gelatin Methacryloyl-Based Constructs with Highly
 Tunable Structural Fidelity. ACS Appl. Mater. Interfaces 2020, 12 (40), 44563-44577.

Simińska-Stanny, J.; Nizioł, M.; Szymczyk-Ziółkowska, P.; Brożyna, M.; Junka, A.; Shavandi, A.;
 Podstawczyk, D., 4D printing of patterned multimaterial magnetic hydrogel actuators. *Add. Manufact.* 2022, 49.

8. Farsheed, A. C.; Thomas, A. J.; Pogostin, B. H.; Hartgerink, J. D., 3D Printing of Self-Assembling

Nanofibrous Multidomain Peptide Hydrogels. Adv. Mater. 2023, 35 (11), 2210378.

 Lai, J.; Ye, X.; Liu, J.; Wang, C.; Li, J.; Wang, X.; Ma, M.; Wang, M., 4D printing of highly printable and shape morphing hydrogels composed of alginate and methylcellulose. *Materi. Des.* 2021, 205.

10. Yoon, S.; Park, J. A.; Lee, H. R.; Yoon, W. H.; Hwang, D. S.; Jung, S., Inkjet–Spray Hybrid
Printing for 3D Freeform Fabrication of Multilayered Hydrogel Structures. *Adv. Healthc. Mater.* 2018, 7 (14), 1800050.

Wang, J.; Liu, Y.; Zhang, X.; Rahman, S. E.; Su, S.; Wei, J.; Ning, F.; Hu, Z.; Martínez-Zaguilán,
 R.; Sennoune, S. R.; Cong, W.; Christopher, G.; Zhang, K.; Qiu, J., 3D printed agar/ calcium alginate
 hydrogels with high shape fidelity and tailorable mechanical properties. *Polymer* 2021, *214*.

Sun, W.; Tashman, J. W.; Shiwarski, D. J.; Feinberg, A. W.; Webster-Wood, V. A., Long-Fiber
 Embedded Hydrogel 3D Printing for Structural Reinforcement. *ACS Biomater. Sci. Eng.* 2021, 8 (1), 303-313.

Ma, T.; Lv, L.; Ouyang, C.; Hu, X.; Liao, X.; Song, Y.; Hu, X., Rheological behavior and particle alignment of cellulose nanocrystal and its composite hydrogels during 3D printing. *Carbohydr. Polym.* 2021, 253.

14. Cantoni, F.; Barbe, L.; Pohlit, H.; Tenje, M., A Perfusable Multi-Hydrogel Vasculature On-Chip Engineered by 2-Photon 3D Printing and Scaffold Molding to Improve Microfabrication Fidelity in Hydrogels. *Adv. Mater. Techn.* **2024**, *9* (4).

15. Dong, L.; Bu, Z.; Xiong, Y.; Zhang, H.; Fang, J.; Hu, H.; Liu, Z.; Li, X., Facile extrusion 3D printing of gelatine methacrylate/Laponite nanocomposite hydrogel with high concentration nanoclay for bone tissue regeneration. *International Journal of Biological Macromolecules* **2021**, *188*, 72-81.

16. Phan, V. H. G.; Duong, H.-S.; Le, Q.-G. T.; Janarthanan, G.; Vijayavenkataraman, S.; Nguyen, H.-N. H.; Nguyen, B.-P. T.; Manivasagan, P.; Jang, E.-S.; Li, Y.; Thambi, T., Nanoengineered injectable hydrogels derived from layered double hydroxides and alginate for sustained release of protein therapeutics in tissue engineering applications. *J. Nanobiotechn.* **2023**, *21* (1).

17. Levato, R.; Lim, K. S.; Li, W.; Asua, A. U.; Peña, L. B.; Wang, M.; Falandt, M.; Bernal, P. N.; Gawlitta, D.; Zhang, Y. S.; Woodfield, T. B. F.; Malda, J., High-resolution lithographic biofabrication of hydrogels with complex microchannels from low-temperature-soluble gelatin bioresins. *Materials Today Bio* **2021**, *12*.

18. Baniasadi, H.; Kimiaei, E.; Polez, R. T.; Ajdary, R.; Rojas, O. J.; Österberg, M.; Seppälä, J., Highresolution 3D printing of xanthan gum/nanocellulose bio-inks. *International Journal of Biological Macromolecules* **2022**, *209*, 2020-2031.

19. Zheng, J.; Chen, G.; Yang, H.; Zhu, C.; Li, S.; Wang, W.; Ren, J.; Cong, Y.; Xu, X.; Wang, X.; Fu,

J., 3D printed microstructured ultra-sensitive pressure sensors based on microgel-reinforced double network hydrogels for biomechanical applications. *Materials Horizons* **2023**, *10* (10), 4232-4242.

20. Janarthanan, G.; Lee, S.; Noh, I., 3D Printing of Bioinspired Alginate-Albumin Based Instant Gel Ink with Electroconductivity and Its Expansion to Direct Four-Axis Printing of Hollow Porous Tubular Constructs without Supporting Materials. *Adv. Funct. Mater.* **2021**, *31* (45).

21. Yang, R.; Tu, Z.; Chen, X.; Wu, X., Highly stretchable, robust, sensitive and wearable strain sensors based on mesh-structured conductive hydrogels. *Chem. Eng. J.* **2024**, *480*.

22. Zhang, B.; Li, S.; Hingorani, H.; Serjouei, A.; Larush, L.; Pawar, A. A.; Goh, W. H.; Sakhaei, A. H.; Hashimoto, M.; Kowsari, K.; Magdassi, S.; Ge, Q., Highly stretchable hydrogels for UV curing based high-resolution multimaterial 3D printing. *Journal of Materials Chemistry B* **2018**, *6* (20), 3246-3253.