Supporting Information

Enhanced catalytic efficiency of nanozyme with V-structured chip for

microfluidic biosensing of S. typhimurium

Ming-Yue Gao, Meng Wang, Yong-Tao Wang and Zhi-Ling Zhang*

College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072,

China.

*E-mail: <u>zlzhang@whu.edu.cn</u>

Content

Hydrated particle size distribution of Fe ₃ O ₄ NPs and Fe ₃ O ₄ /Au NPs measured by
DLS······Fig. S1
UV-vis absorption spectra for the peroxidase-like activity of different reaction
systems Fig. S2
Effect of pH on the peroxidase-like activity of Fe ₃ O ₄ /Au NPs······Fig. S3
Effect of storage time on the peroxidase-like activity of Fe ₃ O ₄ /Au NPs
······Fig. S4
Optimized parameters and microscopic image of the V-structure
······Fig. S5
Microscopic image of the magnetic nanozyme array consisted of Fe ₃ O ₄ /Au NPs
······Fig. S6
Simulation of the substrate concentration field distribution and the binding
reaction rate at different time pointsFig. S7

Zeta potential and hydrated particle size of Fe ₃ O ₄ /Au NPs and Fe ₃ O ₄ /Au-aptamer
NPs measured by DLS······Fig. S8
Measurement of the amount of DNA aptamer per milligram Fe ₃ O ₄ /Au NPs
······Fig. S9
Steady state kinetic study of Fe ₃ O ₄ /Au-aptamer NPs in the presence and absence
of S. typhimurium ······Fig. S10
Photo of the integrated microfluidic chip·····Fig. S11
Absorbance of Fe ₃ O ₄ /Au NPs at 550 nm at different concentrationsFig. S12
Comparison with the reported detection methods of <i>S. typhimurium</i> ······Table S1

Fig. S1 Hydrated particle size distribution of Fe₃O₄ NPs and Fe₃O₄/Au NPs measured by DLS.

Fig. S2 UV-vis absorption spectra for the peroxidase-like catalytic activity of different reaction systems.

Fig. S3 Effect of pH on the peroxidase-like catalytic activity of Fe₃O₄/Au NPs.

Fig. S4 Effect of storage time on the peroxidase-like catalytic activity of Fe₃O₄/Au NPs.

Fig. S5 (A) Optimized parameters and (B) microscopic image of the V-structure.

Fig. S6 Microscopic image of the magnetic nanozyme array consisted of Fe₃O₄/Au NPs.

Fig. S7 (A) Simulation of the substrate concentration field distribution. t=200 s. (B) Simulation of the binding reaction rate at different time points.

Fig. S8 (A) Zeta potential of Fe_3O_4 NPs, Fe_3O_4/Au NPs, and Fe_3O_4/Au -aptamer NPs. (B) Hydrated particle size of Fe_3O_4/Au NPs and Fe_3O_4/Au -aptamer NPs.

Fig. S9 Measurement of the amount of DNA aptamer per milligram Fe_3O_4/Au NPs. Red line: the calibration curve of DNA aptamer concentration based on absorbance at 260 nm. Red points: the concentration of DNA aptamer before and after the conjugation (N=3).

Fig. S10 Steady state kinetic study of Fe₃O₄/Au-aptamer NPs in the presence and absence of *S. typhimurium* with the concentration of TMB (A) and H₂O₂ (B) fixed at 525 μ M and 200 mM, respectively. Double reciprocal plots of catalytic activity of Fe₃O₄/Au-aptamer NPs in the presence and absence of *S. typhimurium* with the concentration of TMB (C) and H₂O₂ (D) fixed at 525 μ M and 200 mM, respectively.

Fig. S11 Photo of the integrated microfluidic chip.

Fig. S12 Absorbance of Fe_3O_4/Au NPs at 550 nm at different concentrations.

Methods	Instruments	LOD (CFU/mL)	Linear range (CFU/mL)	Time	References
Fluorescence	Microplate reader	4	10 ¹ -10 ⁶	2.5 h	1
Fluorescence	Microplate reader	150	6.2×10 ² - 6.2×10 ⁶	3.5 h	2
Thermal imaging	Smartphone	93	1.01×10 ² - 1.01×10 ⁶	<1 h	3
Electrochemical	Electrochemical station	55	6.7×10 ¹ - 6.7×10 ⁵	<2.5 h	4
Surface-enhanced Raman scattering	Hand-held Raman spectrometer	3	10 ⁰ -10 ⁸	45 min	5
Colorimetric	UV-vis spectrophotometer	0.51	1.93×10 ¹ - 1.93×10 ⁵	40 min	6
Colorimetric	Smartphone	44	4.4×10 ¹ - 4.4×10 ⁶	45 min	7
Colorimetric	Smartphone	10	10 ¹ -10 ⁷	90 min	8
Colorimetric	Smartphone	5.6	10 ² -10 ⁷	30 min	this work

 Table S1 Comparison with the reported detection methods of S. typhimurium.

References

- 1. X. Song, H. Wang, X. Shao and X. Xu, Microchem J., 2024, 207, 112111.
- 2. Y. Huang, Y. Zhang, X. Yan, Y. Zhao, M. Duan, X. Li and F. Jia, Food Biosci., 2025, 63, 105606.
- 3. R. Guo, L. Xue, G. Cai, W. Qi, Y. Liu and J. Lin, ACS Appl. Nano Mater., 2021, 4, 5115-5122.
- 4. Y. He, F. Jia, Y. Sun, W. Fang, Y. Li, J. Chen and Y. Fu, Sens. Actuator B-Chem., 2022, 369, 132301.
- 5. J. Zhuang, Z. Zhao, K. Lian, L. Yin, J. Wang, S. Man, G. Liu and L. Ma, *Biosens. Bioelectron.*, 2022, **207**, 114167.
- 6. L. Wang, T. Liao, H. Zhou, Y. Huang, P. Chen, X. Yang and X. Chen, *Anal. Biochem.*, 2021, 615, 114068.
- 7. L. Xue, N. Jin, R. Guo, S. Wang, W. Qi, Y. Liu, Y. Li and J. Lin, ACS Sens., 2021, 6, 2883-2892.
- 8. Z. Su, S. Wei, X. Shi, X. Wang, L. Zhang, X. Bu, H. Xu, Y. Liu, M. Jin, B. Pang and C. Zhao, *Anal. Chim. Acta*, 2023, **1239**, 340672.