Supplementary Information (SI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2025

Matrix viscoelasticity drives cell cluster formation to counteract cellular senescence

Xinying Wang, Limin Song, Jingwen Zhao, Yiling Xiong, Rongrong Jin, Jing He*

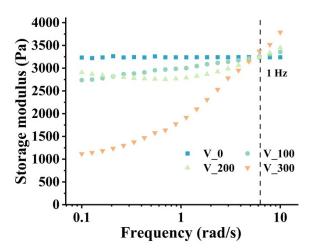
National Engineering Research Center for Biomaterials, College of Biomedical

Engineering, Sichuan University, Chengdu, 610064, PR China

*Corresponding author: Tel.: +86 28 8541 2923; fax: +86 28 8541 0246;

E-mail address: jinghe30@scu.edu.cn

Table 1 Different viscoelastic PAM/Alg matrix formulation


Groups	40%AM	2%BIS	UP H ₂ O	5%Alg	TEMED	10%APS
V_0	2ml	500μ1	7.4ml	0ml	4µl	100μ1
V_100	2ml	$400\mu l$	3.6ml	4ml	4µl	100μ1
V_200	2.2ml	200μ1	1.6ml	6ml	4µl	100μ1
V_300	3.2ml	40µl	0ml	6.8ml	4μ1	100μ1

SI Table. 1. The preparation method of viscoelastic matrix is mixed into glue in one step according to the above ratio.

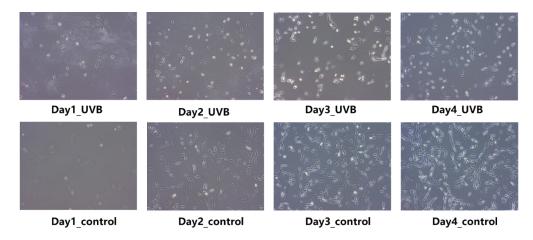
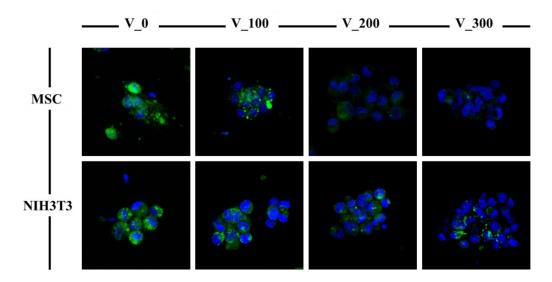
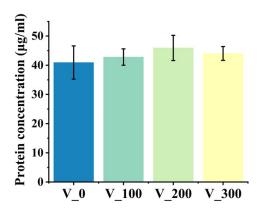
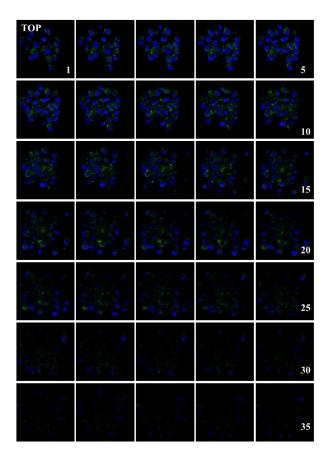

Table 2 Primer sequences for RT-qPCR

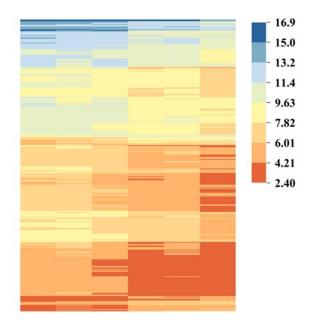
Table 2 Primer sequences for K1-qPCR					
引物名称	引物序列				
GAPDH-F	CAGTGGCAAAGTGGAGATTGTTG				
GAPDH-R	TCGCTCCTGGAAGATGGTGAT				
Cdkn1a-F	TCCCGACTCTTGACATTGCT				
	AGTATGGGGTGGGGAAAAG				
Cdkn1a-R	GGTGATGATGGGCAACG				
Cdkn2a-F	GAGAAGGTAGTGGGGTCCTC				
Cdkn2a-R	CAAGTGTGCATTGACCCGAAATT				
Cxcl12-F	GAAGAGGGAGGAGCGAGTTACAA				
Cxcl12-R	TGCAATACACTCCATGGGCTTA				
Rock2-F	A				
Rock2-R	GATTTCAGAACCTCGGGCGATAT				
Ctnnb1-F	AACCTTTCAGATGCAGCGACTAA				
Ctnnb1-R	GCTGCACAGGTGACCACATTTAT				
Gja1-F	ATCGCGTGAAGGAAGAAGC				
Gja1-R	TCGCTGGCTTGCTTGTA				


SI Table. 2. The primer sequence of the gene designed in the experiment.

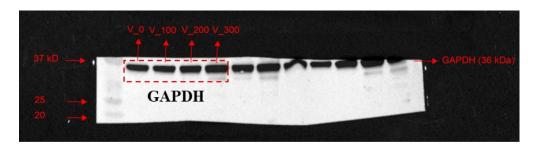

SI Fig. 1. The variation of storage modulus with frequency for all groups.

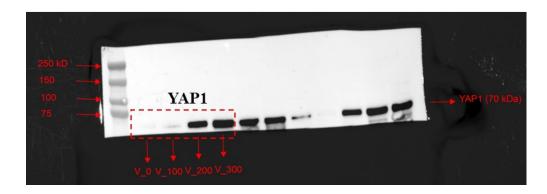

SI Fig. 2. Preliminary experiment on the establishment of UV-induced cell senescence model. NIH3T3 cells were inoculated on the culture plate, and the experimental group was subjected to ultraviolet irradiation experiment from the second day, and the cell status was observed and recorded daily through the optical microscope.

SI Fig. 3. Validation of H_2O_2 -Induced Cellular Senescence Model in MSCs and NIH-3T3 Cells. The concentration of H_2O_2 was determined to be 800 μ M based on preliminary experiments. Cells were exposed to this concentration for 4 hours, followed by a 24 h incubation in fresh medium before performing SA- β -gal staining to assess cellular senescence.



SI Fig. 4. Protein content of materials with different groups. Protein concentration comparison of materials with different groups after soaking in equal volumes of culture medium for 2 days; equal weights of samples were lysed with 1% Triton X-100 at a 1:5 ratio, followed by BCA assay measurement.




SI Fig. 5. Cell senescence in different spatial layers of spherical cell aggregates of

group V_300.

SI Fig. 6. Volcano map of all different genes in group V_0 and group V_300 .

SI Fig.7. Original blots.