Supplementary Information (SI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2025

Supplementary materials

Table S1. The grain size, and mechanical properties of pure Zn and Zn-Li-Sr alloy, n=3. Data are presented as mean \pm standard deviation.

Materials	Grain	UTS (MPa)	YS (MPa)	Ductility (%)	Vickers hardness
	size	(MFa)	(MFa)	(70)	
	(µm)				(HV)
Pure Zn	$14.38 \ \pm$	68.05 ±	$48.38 \hspace{0.1in} \pm$	43.9 ± 1.49	31.90 \pm
	5.81	5.58	6.77		0.50
Zn-Li-Sr	8.66 \pm	$452.15 \pm$	$387.26 \pm$	18.23 \pm	$131.50 \pm$
	4.20	8.25	5.55	2.11	6.30

Table S2. The mechanical properties, and weight loss (g) after 30 days of immersion of pure Zn and Zn-Li-Sr alloy, n=3. Data are presented as mean \pm standard deviation.

Materials	UTS	YS	Ductility	Weight	
	(MPa)	(MPa)	(%)	loss (%)	
Pure Zn	68.05 ±	$48.38 \hspace{0.1cm} \pm$	43.9 ± 1.49	0.8	±
	5.58	6.77		0.08%	
Zn-Li-Sr	$452.15 \pm$	$387.26 \pm$	18.23 \pm	0.5	\pm
	8.25	5.55	2.11	0.04%	

Table S3. Comparison of the properties of Zn-0.8Li, Zn-0.8Sr and Zn-0.8Li-0.8Sr alloys.

Performance	$Zn-0.8Li^1$	$Zn-0.8Sr^2$	Zn-0.8Li-0.8Sr
Mechanical	UTS:	UTS: 150-200 MPa	UTS: 452.15 ± 8.25
properties	Microhardness:	Microhardness:	MPa
	200-240 HV	45-50 HV	Microhardness:
			$131.50 \pm 6.30 \ HV$
Corrosion	Small and uniform	Large corrosion pits	Small corrosion pits
pattern	corrosion pits		
Biocompatibility	In vitro: promote	In vitro: promote the	In vitro: promote the
	the proliferation of	proliferation and	proliferation and
	MC3T3-E1 cells.	osteogenic	osteogenic
	In vivo: ——	differentiation of	differentiation of
		MC3T3-E1 cells.	MC3T3-E1 cells.
		In vivo: promoting	In vivo: promoting
		the repair of femoral	the repair of femoral
		defects in rats.	defects in diabetic

rats.

Table S4. Primer sequence of MC3T3-E1 cells.

Target gene	Direction	Primer sequence (5'-3')
ALP	Forward	GGAGATGGTATGGGCGTCTC
	Reverse	GGACCTGAGCGTTGGTGTTA
Col I	Forward	TTCTCCTGGCAAAGACGGAC
	Reverse	CTCAAGGTCACGGTCACGAA
OCN	Forward	CTGACCTCACAGATCCCAAGC
	Reverse	TGGTCTGATAGCTCGTCACAAG
RUNX-2	Forward	TCGGAGAGGTACCAGATGGG
	Reverse	AGGTGAAACTCTTGCCTCGT

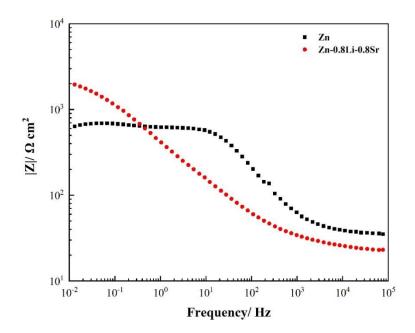
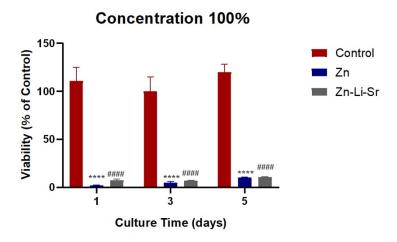



Fig S1. Bode plots of pure Zn and Zn-Li-Sr alloy (n = 3).

Fig S2. CCK8 results of 100%. Compared to the control group, statistical significance was set at: ****P < 0.0001, ####P < 0.0001. Data are presented as mean \pm SD (n = 3).

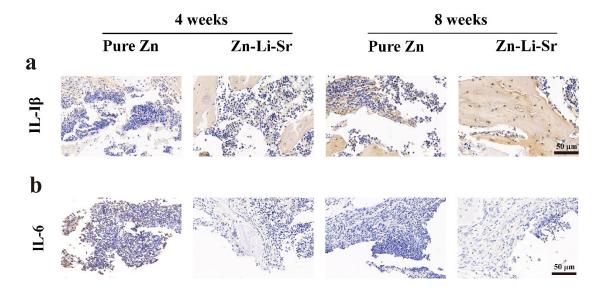


Fig S3. Immunohistochemical staining for inflammation. (a) Immunohistochemical staining of IL-1 β . (b) Immunohistochemical staining of IL-6 (n = 3).

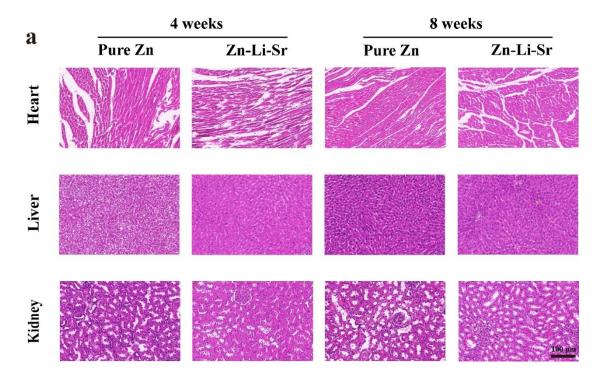


Fig S4. In vivo biosafety testing. (a) HE staining of heart, liver, and kidney (n = 3).

Reference

- 1. H. Yang, B. Jia, Z. Zhang, X. Qu, G. Li, W. Lin, D. Zhu, K. Dai and Y. Zheng, *Nat Commun*, 2020, **11**, 401.
- 2. B. Jia, H. Yang, Z. Zhang, X. Qu, X. Jia, Q. Wu, Y. Han, Y. Zheng and K. Dai, *Bioact Mater*, 2021, **6**, 1588-1604.