Magnetic diatom shells: Nature's blueprint for cellular transport

Alice Lunghi^a, Danilo Vona^b, Stefania Roberta Cicco^c, Cesar Vicente-Garcia^d, Fabio Biscarini^{e,f}, Gianluca M. Farinola^{d,*}, Michele Bianchi^{e,*}

^a Department of Physics, Informatics and Mathematics, Università degli Studi di Modena e Reggio Emilia, 41125 Modena, Italy

^b Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari "Aldo Moro", Bari, I-70126, Italy

^c Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche, CNR-ICCOM, Via E. Orabona 4, Bari, 70126, Italy

^d Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Bari, I-70126, Italy

^e Department of Life Sciences, Università degli Studi di Modena e Reggio Emilia, 41125, Modena, Italy

^f Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, 44121, Ferrara, Italy

correspondence to: michele.bianchi@unimore.it, gianlucamaria.farinola@uniba.it

Supporting information

Figure S1. A) FTIR spectra of the magnetic shells during the different synthetic steps. B) SEM image of the surface of a NPs-decorated shell (scale bar is 1 µm);

Figure S2. EDX analysis reporting elemental composition (specifically carbon and iron content) of the diatom shells before and after functionalization with magnetic nanoparticles

Figure S3. SEM image of cells growing on a magnetic diatom shell. After 72 hours cells are firmly adhered to both the support substrate and to the magnet, anchoring the shell to the surface. Magnification: 1000X, EHT: 15 kV.

Figure S4. SEM image of cells growing on a magnetic diatom shell. After 72 hours cells are firmly adhered to both the support substrate and to the magnet, anchoring the shell to the surface. Magnification: 1500X, EHT: 15 kV.

Contact time (MNPs and shells); minutes	Presence of extra-shell polydopamine formation	Magnetization (induced with external magnetic field <i>via</i> NdFeB magnet)
1	No	No
5	No	No
10	No	Yes

20		V
30	Partial	
60	Abundant	Yes
90	Abundant	Yes
120	Abundant	Yes

Table S1. Key parameters for evaluation of efficient functionalization of diatom shells.

Supporting Video 1. Video demonstrating the movement of diatom shells functionalized with magnetic NPs through a small NdFeB magnet.

Supporting Video 2, 3 and **4**. Videos showing magnetic diatoms loaded with several cells rotating due to the presence of an underlying moving magnet.