Supporting Information

Low-cost, robust, and transportable devices based on Cu(I)-I cluster hybrid luminescent compound as tetracycline sensors for contaminated waters

Elena de la Rubia^a, Ricardo Garsed^a, Fernando Aguilar-Galindo^{b,d}, Andrea Garcia-Hernán^a,

Gines Lifante-Pedrola^c, Pilar Amo-Ochoa^{a,d}*.

^a Dpto. de Química Inorgánica. Universidad Autónoma de Madrid, 28049 Madrid, Spain.

^b Dpto. Química. Universidad Autónoma de Madrid, 28049 Madrid, Spain

^c Dpto. de Física de Materiales. Universidad Autónoma de Madrid, 28049 Madrid, Spain.

^dInstitute for Advanced Research in Chemical Sciences (IAdChem). Universidad Autónoma de Madrid, 28049 Madrid, Spain

Characterization of the 1-propyl-1,4-diazabicyclo[2.2.2]octan-1-ium (pr-ted) ligand

Figure S1: ¹H-NMR spectrum for 1-propyl-1,4-diazabicyclo[2.2.2]octan-1-ium (pr-ted) ligand in CD₃CN.

Characterization of submicrometric [Cu₄I₆(pr-ted)₂] particles

(a) (b)

Figure S2: Images of $[Cu_4I_6(pr-ted)_2]$ particles suspended in ethanol (a) and particles after filtration (b). Under ultraviolet light (λ = 365nm).

Figure S3: SEM image of submicrometric $[Cu_4I_6(pr-ted)_2]$ particles. The average size of $[Cu_4I_6(pr-ted)_2]$ particles is 369.2 ± 129.5 nm.

Figure S4: Simulated PXRD diffraction pattern of [Cu₄I₆(pr-ted)₂] from single crystal (black) and PXRD diffraction pattern of submicromertric [Cu₄I₆(pr-ted)₂] particles (red).

Figure S5: ATR-FTIR spectra of 1-propyl-1,4-diazabicyclo[2.2.2]octan-1-ium (pr-ted)

(black) and submicrometric [Cu₄I₆(pr-ted)₂] particles (red).

Table S1. DLS size of submicrometric $[Cu_4I_6(pr-ted)_2]$ particles in different solvents (ethanol and water).

Solvent	Water	Ethanol
Size (nm)	841.0	495,2

Water stability studies of submicrometric [Cu₄I₆(pr-ted)₂] particles as a function of time and pH.

Figure S6. ¹H-NMR of submicrometric [$Cu_4I_6(pr-ted)_2$] particles in D₂O at initial time (a), after 1 hour (b), after 1 day (c), and after 7 days (d).

Figure S7: a) ATR-FTIR and b) PXRD spectrum of submicrometric $[Cu_4I_6(pr-ted)_2]$ particles (black), at pH= 8.89 (red), pH= 7.30 (green) and pH= 4.24 (blue).

Sensing versus tetracycline (TC).

Figure S8: S-V plot for the quenching of the emission of the aqueous suspension of submicron $[Cu_4I_6(pr-ted)_2]$ particles in the presence of TC (a) and expanded Stern-Volmer plot in the linear range 0 - 2.5 μ M (b).

Figure S9: Emission spectra of a real river water suspension of $[Cu_4I_6(pr-ted)_2]$ submicrometric particles before and after addition TC (a). S-V plot for the quenching of the

emission of the river water suspension of submicron $[Cu_4I_6(pr-ted)_2]$ particles in the presence of TC (b) and expanded Stern-Volmer plot in the linear range 0 - 2.5 μ M (b).

Sensor selectivity and recyclability characterization

Figure S10: ATR-FTIR spectra of submicrometric [Cu₄I₆(pr-ted)₂] particles (black) and after 30 cycles of immersion a TC solution (red).

DFT calculations: Fluorescence quenching mechanism to TC

Table S2. HOMO (π) and LUMO (π^*) energy levels of TC.

Energy (eV)	TC
НОМО	-6.11
LUMO	-2.62
HOMO-LUMO gap	3.49

Figure S11.Total Density of States (DOS) and projections on the pr-ted and Cu₄I₆ cluster.

Figure S12: Emission (red), and excitation (blue) spectra of [Cu₄I₆(pr.-ted)₂] particles.

Portable devices characterization.

Figure S13: [Cu₄I₆(pr-ted)₂] pellets formed after application of 0.4 (a), 1.4 GPa (b), and 11.1 GPa (c) of uniaxial pressure.

Figure S14. Commercial resin (left) and $[Cu_4I_6(pr-ted)_2]$ @mesh0.1% (right) under visible (a) and UV (λ =365nm) light (b). Emission spectra of commercial resin (λ_{em} =440 nm, black) and $[Cu_4I_6(pr-ted)_2]$ @mesh0.1% (λ_{em} =440 nm and 531 nm, red) (c).

Figure S15: Emission spectra of $[Cu_4I_6(pr-ted)_2]$ at ambient pressure (black) and after application of uniaxial pressure: 0.4 GPa (red), 1.4 GPa (blue) and 11.1 GPa (green).

Figure S16: PXRD diffraction pattern of the submicrometric $[Cu_4I_6(pr-ted)_2]$ particles (black), compared with the PXRD diffraction pattern of the submicrometric $[Cu_4I_6(pr-ted)_2]$ particles pellet prepared aplying 11.1 GPa (red).

Figure S17: ATR-FTIR spectra of submicrometric $[Cu_4I_6(pr-ted)_2]$ particles (black), $[Cu_4I_6(pr-ted)_2 @PLA1\%, (red) and PLA (blue).$

Figure S18: PXRD diffraction pattern of submicrometric [Cu₄I₆(pr-ted)₂] particles (black), and ([Cu₄I₆(pr-ted)₂ @PLA1%), (red).

Figure S19. Images under UV light (λ =365nm) of [Cu₄I₆(pr-ted)₂]@mesh1% (top, a), and [Cu₄I₆(pr-ted)₂]@mesh0.1% (top, b). PXRD diffractograms of submicrometric [Cu₄I₆(pr-ted)₂] particles (black), [Cu₄I₆(pr-ted)₂]@mesh1% (down a) and [Cu₄I₆(pr-ted)₂]@mesh0.1% (down b) both in red.

Figure S20: SEM images of the surface of uncoated paper strips (a) and of the surface (b and c) and cross section (d) of paper strips coated with [Cu₄I₆(pr-ted)₂] submicrometric particles.

Figure S21. EDX of paper strips after immersion in a submicrometric $[Cu_4I_6(pr-ted)_2]$ particles suspension.

Figure S22. SEM images of glass fiber before (a) and after (b, c) immersion in a suspension of submicrometric $[Cu_4I_6(pr-ted)_2]$ particles. EDX details (d).

Figure S23: SEM images of [Cu₄I₆(pr-ted)₂]@PLA1%, (top) and cross section (bottom).

Figure S24: EDX of [Cu₄I₆(pr-ted)₂]@PLA1%.

Figure S25: SEM-EDX of [Cu₄I₆(pr-ted)₂]@mesh0.1%.

Figure S26: Image of paper strips coated with submicrometric particles submerged in different concentrations of TC under UV light ($\lambda = 365$ nm). 0 μ M (a), 50 μ M (b), 100 μ M,(c), 200 μ M,(d), 300 μ M (e), and 400 μ M (f).