

1 ANTITUMOR ACTIVITY AND SELECTIVITY OF A 2 NANOSTRUCTURED PEROXO POLYOXONIOBATE

3 Luiz C. A. Oliveira^{a*}, Cinthia C. Oliveira^{a**}, Samuel M. Breder^a, Klaus Krambrock^a Poliane
4 Chagas^a, Ana P. Heitmann^a, Estella G. da Mota^a, José B. Gabriel^a, Jadson C. Belchior^a, Leonardo A.
5 De Souza^b, Tiago H. Ferreira^c, Sued E. M. Miranda^c, André L. B. Barros^c, Cynthia L. M. Pereira^a,
6 Vinícius D. N. Bezzon^c, Fábio F. Ferreira^f.

7

8 ^aUniversidade Federal de Minas Gerais, Departamento de Química, Av. Antônio Carlos 6627, Belo Horizonte-
9 MG, 31270-901, Brazil.

10 ^b Universidade do Estado do Rio de Janeiro, Instituto de Química, Departamento de Química Geral e
11 Inorgânica, Rua São Francisco Xavier 524, Rio de Janeiro-RJ, 20550-013, Brazil.

12 ^c Universidade Federal de Minas Gerais, Faculdade de Farmácia, Av. Antônio Carlos 6627, Belo Horizonte-
13 MG, 31270-901, Brazil.

14 ^d Departamento de Física, Centro de Ciências Exatas, Universidade Federal do Espírito Santo (UFES), Campus
15 Goiabeiras, Vitória - ES, CEP 29075-910, Brazil.

16 ^e Departamento de Física, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto,
17 Campus Universitário Morro do Cruzeiro, Ouro Preto - MG, CEP 35402-136, Brazil.

18 ^fCentro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), Av. dos Estados
19 5001, Santo André, SP, 09210-580, Brazil.

20

21

22

23

24

25

26

27

28

29

30

31

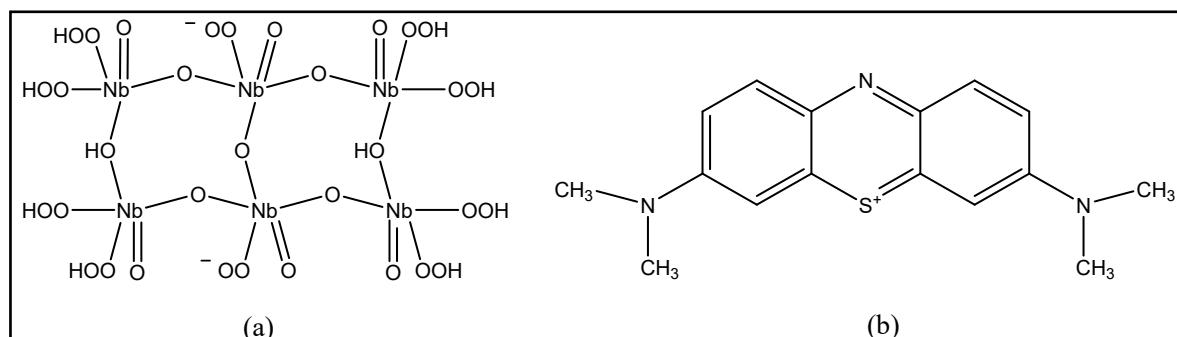
32

33

34 Corresponding author phone: +55 31 3409-7550

35 *lcao@ufmg.br

36 **cinthia.soares.castro@gmail.com


37

38 **SUPPORTING INFORMATION**

39

40 PONb structure (Figure S1a) has five different types of oxygen atoms: five bridging atoms μ_2
41 – O, two bridging hydroxyls μ_2 – OH, six terminal oxygens η – O, four terminal protonated peroxides
42 η – OOH and two terminal deprotonated peroxides η – OO⁻ bound to the central atoms Nb(V). The
43 Nb(V) atom in crystal lattices of the PONb monomer has a coordination number from 5 to 7, as
44 observed for other polyoxoniobates types reported in the literature¹⁻³. B3LYP/LanL2Dz/6-31G(d,p)
45 (gas phase) optimized geometries of the PONb and MB monomers, and the PONb-MB system are
46 shown in Figure S2.

47

48 **Figure S1.** Chemical structure of the proposed Polyoxoniobate model ($[H_{10}Nb_6O_{13}(O_2)_{10}]^{2-}$)(a) and
49 the methylene blue dye (b).

51

52

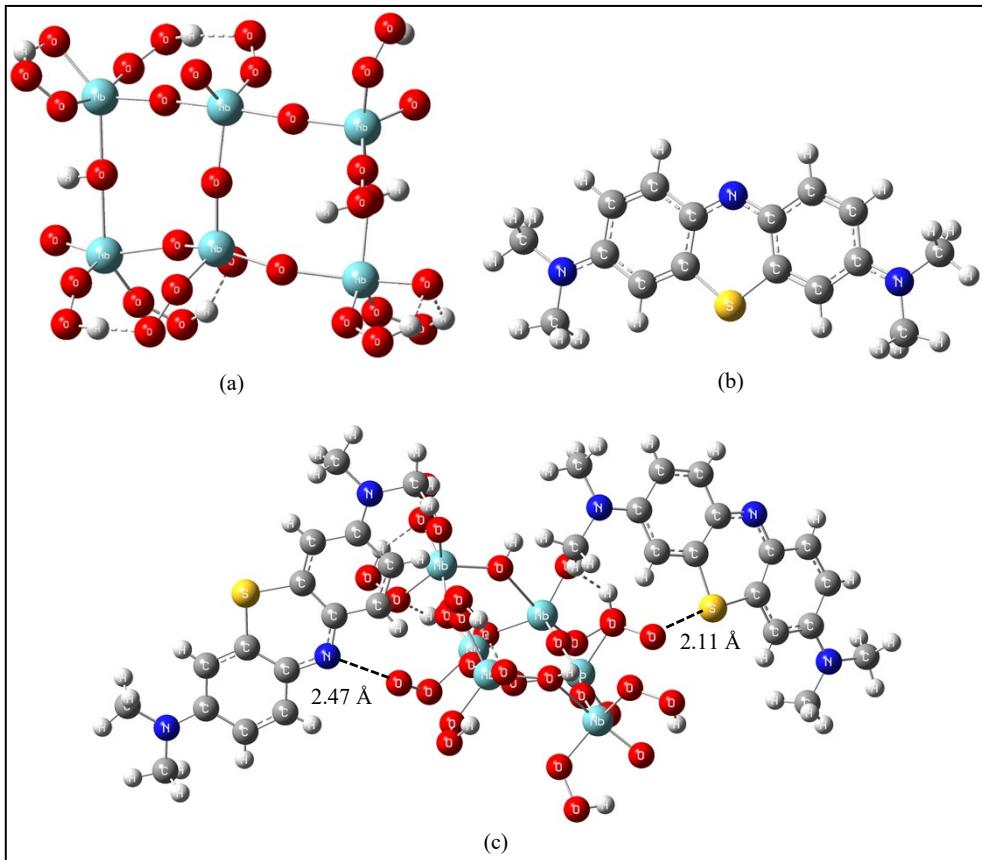
53

54

55

56

57


58

59

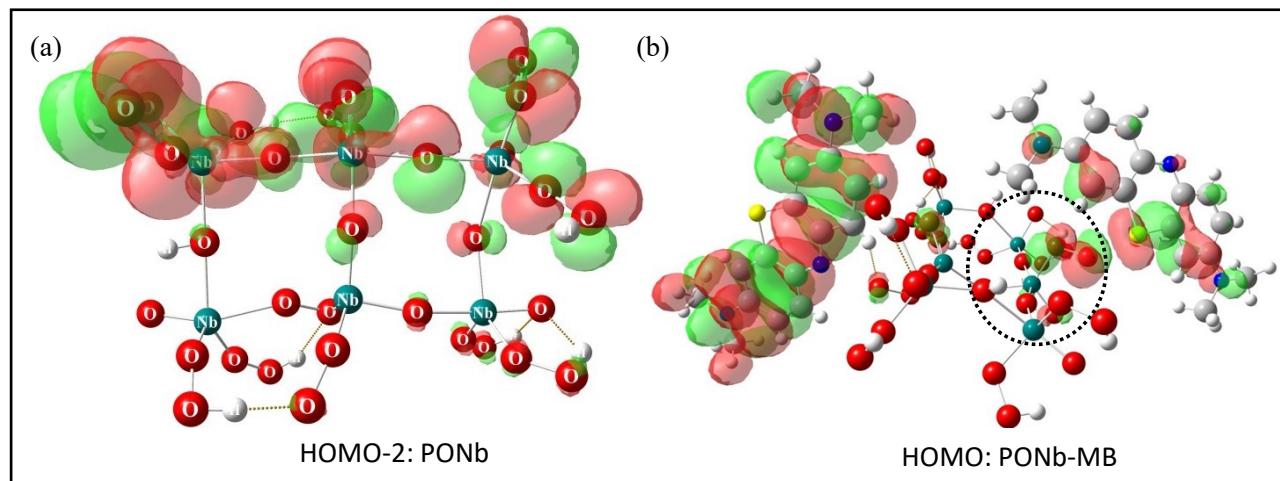
60

61

62

Figure S2. B3LYP/LanL2Dz/6-31G(d,p) fully optimized structures of PONb (a), MB (b) and PONb-MB system (c).

63 The transitions that contribute the most to the calculated bands (Figures S1b and c) occur
 64 between the molecular orbitals highlighted in Table S1. Other contributions (less than 10%) are also
 65 present and refer to transitions between innermost molecular orbitals of difficult interpretations.
 66 Except for the HOMO-2 orbital (Figure S1d), the LUMO+5 orbital (Figure S3a) is evenly distributed
 67 along the PONb surface. This indicates the potential interaction sites that would affect the calculated
 68 absorption band at 287 nm (red line in Figure 1b) for the PONb model proposed. The isosurface
 69 predominance of the orbitals in the protonated and deprotonated peroxide groups highlights these
 70 regions as potential interaction sites of PONb with proton and electron acceptor chemical species,
 71 respectively, such as the MB molecule. HOMO orbital (Figure S3b) region located in the heterocyclic
 72 ring of MB molecule that interacts through its N atom with PONb monomer may destabilize the


73 intermolecular interaction. The interaction between PONb and the S atom (heterocyclic ring) of the
 74 MB molecule stabilizes the intermolecular interaction in the PONb-MB system (see the circled region
 75 in Figure S3b). These results agree with the intermolecular distances calculated at about 2.47 Å
 76 (PONb—N-MB) and 2.11 Å (PONb—S-MB), Figure S2c.

77

78 **Table S1.** Transition energy, oscillator force (*f*) and main contributions to the UV-Vis bands
 79 calculated at B97D/LanL2Dz/6-31G(d,p) for PONb, MB and PONb-MB system.

Structures	Wavelength / nm	Transition Energy / eV	<i>f</i>	Contribution
PONb	287	4.33	0.227	HOMO-2 → LUMO+5 (61%)
	216	5.75	0.199	HOMO-2 → LUMO+1 (67%)
MB	267	4.76	0.763	HOMO-1 → LUMO+1 (49%)
				HOMO → LUMO+2 (35%)
	524	2.36	0.993	HOMO → LUMO (71%)
PONb-MB	550	2.21	0.739	HOMO → LUMO+3 (60%)

80

84

85 The formation energy of the PONb-MB system, ΔE_F , was calculated as:

86
$$\Delta E_F = E_{PONb-MB} - (E_{PONb} + 2E_{MB}) \quad (S1)$$

87 In which $E_{PONb-MB}$, E_{PONb} and E_{MB} correspond to the total energy of the PONb-MB, isolated
 88 PONb, and MB fully optimized structures, respectively. The enthalpy (ΔH_F) and Gibbs free energy
 89 of formation (ΔG_F) for PONb-MB system were calculated according to Equations S2 and S3, where
 90 ΔH_T and $T\Delta S$ are respectively the thermal correction to enthalpy and entropy contribution evaluated
 91 using standard statistical thermodynamic formulae⁴. All calculated parameters are shown in Table
 92 S2.

93

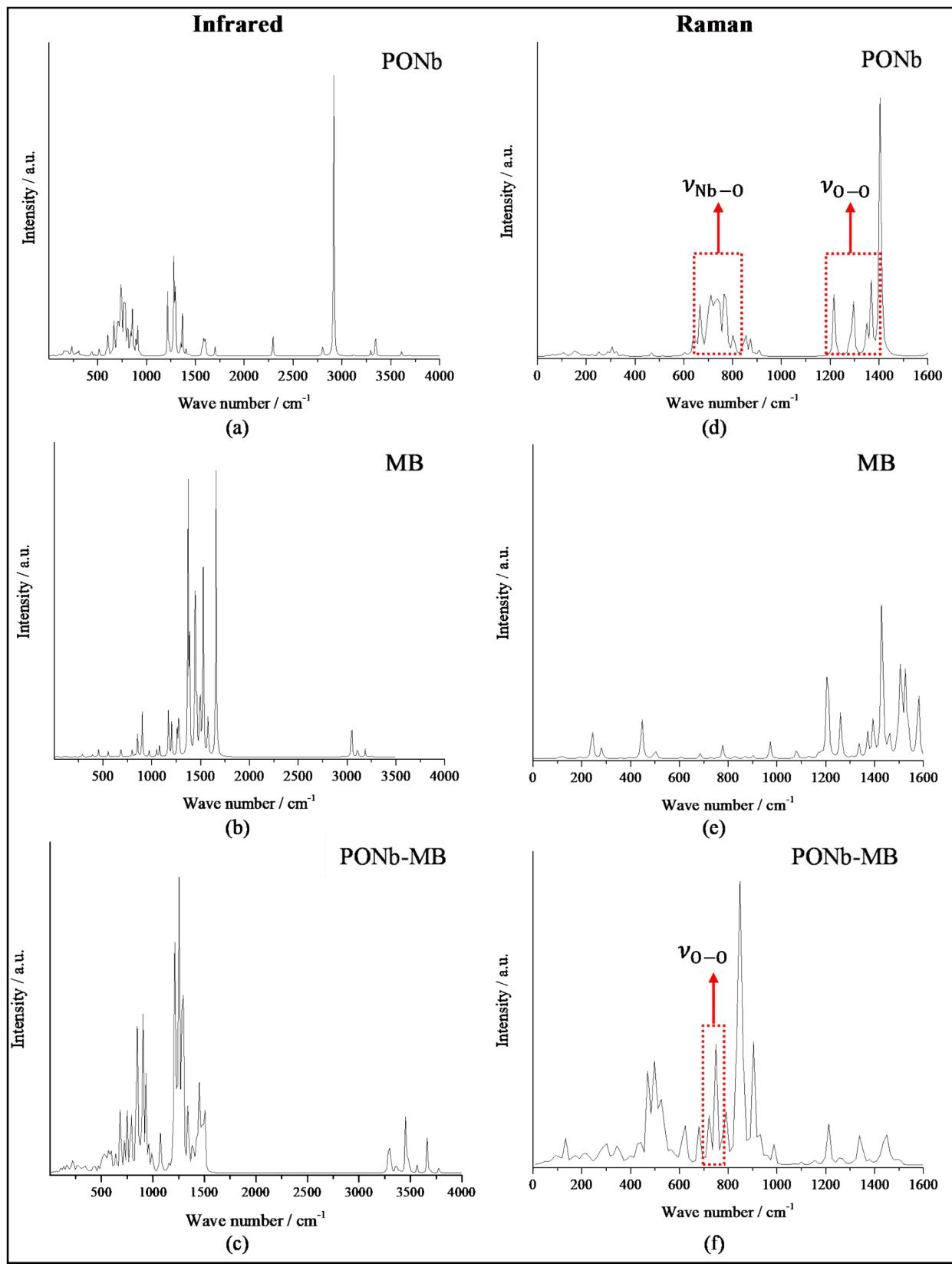
94
$$\Delta H_F = \Delta E_F + \Delta H_T \quad (S2)$$

95

96
$$\Delta G_F = \Delta H_F + T \Delta S \quad (S3)$$

97

98


99 **Table S2.** Thermodynamic parameters calculated at B3LYP/LanL2Dz/6-31G(d,p) level (p = 1 atm, T
 100 = 298.15 K) for the PONb-MB system. All values in units of kcal mol⁻¹.

Structure	ΔE_F	ΔH_T	$T\Delta S$	ΔH_F	ΔG_F
PONb-MB	-55.0	-8.4	-26.3	-63.4	-37.1

101

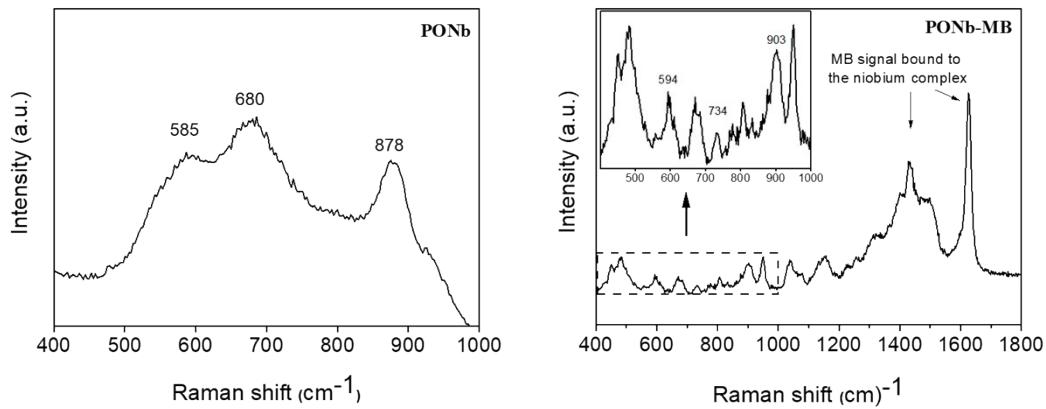
102 Infrared (IR) and Raman spectra (Figure S4) were calculated at B3LYP/LanL2Dz/6-31G(d,p)
 103 level for the PONb and MB monomers, and the PONb-MB system. In our harmonic frequency
 104 calculations, the influence of possible interactions between PONb-PONb or two PONb-MB systems
 105 on band shifts were not considered, since it is a quite demanding computational task. Nevertheless,
 106 the main normal modes were assigned and are shown in Table S3. In the IR spectrum of isolated
 107 PONb (Figure S4a), we can highlight the following bands: (i) –O–O stretching of η – OOH groups in
 108 the range 1200-1350 cm⁻¹; (ii) –Nb–O stretching of η – O groups in the range 750-900 cm⁻¹ and (iii) –
 109 Nb–OH stretching of μ_2 – OH groups in de 550 cm⁻¹ (very low-intensity). In the Raman spectrum for
 110 isolated PONb (Figure S4d) are found the low-intensity bands of the –O–O⁻ stretching of the
 111 deprotonated peroxide ligands in the region of 1230 cm⁻¹. The formation of the PONb-MB system

112 slightly shifts the bands relative to the free –O–O[·] stretching to the high-energy region of the Raman
113 spectrum. This band shifts from 1230 cm⁻¹ (isolated PONb) to about 1250-1300 cm⁻¹ (PONb–MB).
114 Simultaneous –O–O[·] (PONb) and –C–N / –C–S (MB) stretches are observed in the low-energy region
115 in the range 745-800 cm⁻¹ (Table S3) in the IR and Raman spectra. These results indicate that there
116 is an established interaction between the PONb and MB monomers to form a PONb–MB compound.

117
118 **Figure S4.** Simulation of the IR and Raman spectra calculated at B3LYP/LanL2DZ/6-31G(d,p) for
119 PONb, MB, and PONb-MB system. The main absorption bands are described in Table S3. In (b) and
120 (f), the highlighted theoretical Raman bands are in good agreement with the experimental results.

121

122


123 **Table S3.** B3LYP/LanL2Dz/6-31G(d,p) vibrational frequencies (in cm^{-1}) and Raman-IR assignments
 124 for PONb, MB, and PONb-MB systems. The assignments of the modes highlighted are in good
 125 agreement with experimental results*.

Structures	Vibrational assignments	IV / cm^{-1}	Raman / cm^{-1}
PONb	$\nu_{\text{O-H}}$	3900-2750	3200-2900
	$\nu_{\text{O-O}}$ (protonated peroxides) *	1350-1200	1400-1280*
	$\nu_{\text{O-O}}$ (deprotonated peroxides) *	-	1230*
	$\nu_{\text{Nb-O}}$ *	900-750	800-680*
MB	$\nu_{\text{C-H}}$ (CH_3 group)	-	3250-3000
	$\nu_{\text{C-C}}$ (aromatic)	1690	-
	$\nu_{\text{C-N}}$ (heterocycle)	-	1680
	δ_{CH_2} (CH_3 group)	1500	-
PONb-MB	$\nu_{\text{C-C}}$ (heterocycle)	1430	-
	$\nu_{\text{O-H}}$	3650-3550	3650-3550
	$\nu_{\text{C-H}}$ (CH_3 group)	3500-3250	-
	$\nu_{\text{C-N}}$ (heterocycle)	1270	-
MB	$\nu_{\text{O-O}}$ (free protonated peroxides)	-	1300-1250
	$\nu_{\text{O-O}}$ (deprotonated peroxides) / $\nu_{\text{C-N}}$ (heterocycle) *	800	770*
	$\nu_{\text{O-O}}$ (deprotonated peroxides) / $\nu_{\text{C-S}}$ (heterocycle) *	745	746*

126 vs: very strong; s: strong; m: medium; w: weak, vw: very weak, v: stretching; δ : angular deformation.

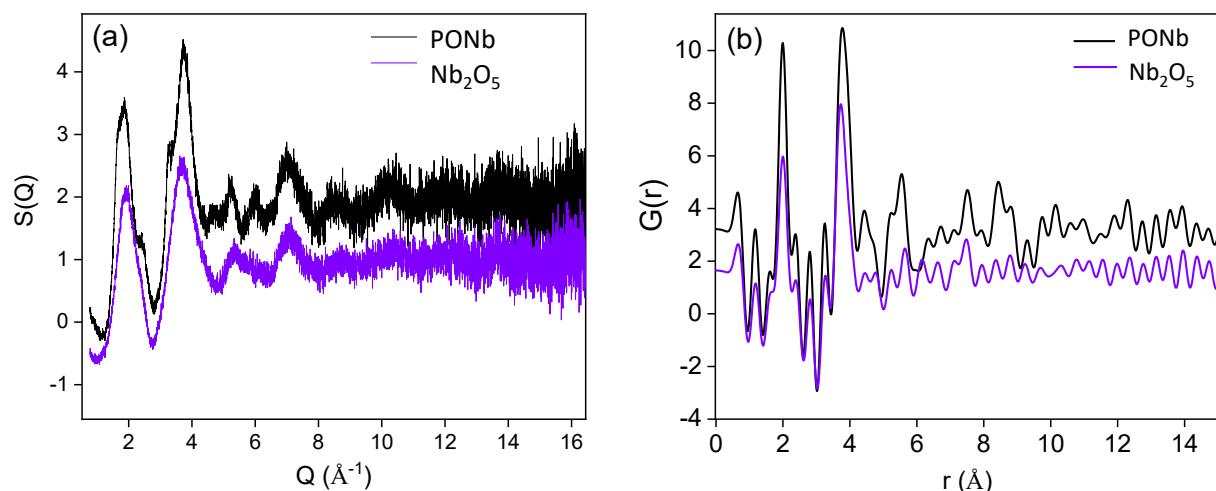
127

128 In the Raman spectrum of the PONb, a peak at 585 cm^{-1} and a broad band around 680 cm^{-1}
 129 can be seen, which are usually associated to oxygen-hexacoordinated Nb in a distorted octahedral. In
 130 addition, there is an intense and well-defined peak at 878 cm^{-1} , characteristic of Nb-peroxo species
 131 formed from the addition of hydrogen peroxide to niobium oxide⁵. The bands related to PONb appear
 132 shifted in the Raman spectrum of the PONb-MB material, due to the presence of MB bound to the
 133 structure, evidenced in Figure S10. These properties further support the existence of chemical bond
 134 between the dye and the niobium complex to form PONb-MB.

135

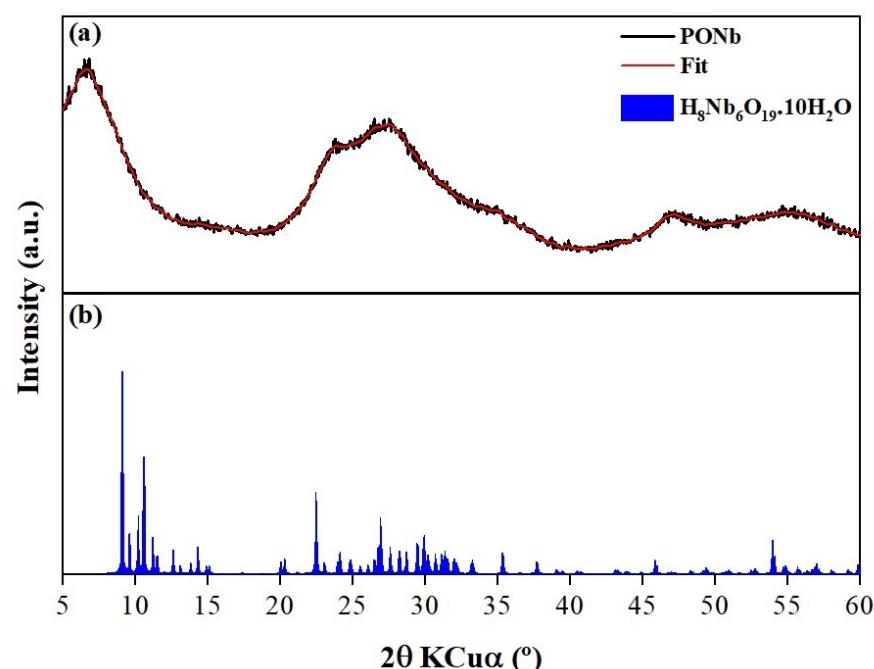
136 **Figure S5:** RAMAN spectrum for PONb and PONb-MB.

137


138 The structural characterization of the compounds was further investigated by X ray powder
 139 diffraction. The main objective here was the comparison of the PONb structure after lyophilization
 140 and its precursor, *i.e.*, the precipitated niobium oxyhydroxide^{6,7}, thus proving that we have a new
 141 structure called PONb.

142 Figure S6a presents the structure functions for lyophilized PONb and Nb₂O₅. There are some
 143 differences in PONb S(Q), especially in the regions from 2.2 to 3.0 Å⁻¹, 3.0 to 3.2 Å⁻¹, and between
 144 4.2 to 8.0 Å⁻¹. The Fourier Transform of these results yielded the PDF pattern for the samples, shown
 145 in Figure S5b. As can be seen, the main correlations (atomic pair distances) are maintained up to 4 Å
 146 for both samples. The PONb G(r) has a higher intensity than the other, which can be related to the
 147 higher Hydrogen and Oxygen amount in its structure, yielding a high coordination factor for these
 148 atoms in the local structure. Probably, the main local structure where Nb is bonded to O is maintained.
 149 Based on the distances calculated up to 10 Å using the Bond_Str software, and based on the Nb₂O₅
 150 CIF file, it is possible to infer some correlations observed in the PDF patterns (S6b). Considering the
 151 calculated distances, correlations up to 2 Å can be related to Nb-O pairs; distances between 2 and 3
 152 Å can be O-O, and distances between 3.2 and 4.0 Å can be associated with Nb-Nb nearest neighbor
 153 atoms.

154 It is worth noting that PONb G(r) has higher well-structure correlations further 4 Å, *i.e.*, the
 155 correlation peaks have higher intensity as well as well-defined peaks, compared to Nb₂O₅. This can


156 be associated with a better-organized medium-order structure for this sample, while the Nb_2O_5
157 preserves most of the local structure (low-order). Therefore, it is possible to infer that the synthesized
158 PONb presents a unique and different crystalline structure than the Nb_2O_5 . The PONb linked to MB
159 species generates the PONb-MB structure.

160

161
162 **Figure S6.** Structure function (a) and PDF patterns ($G(r)$) for PONb after lyophilization and its
163 precursor, the Nb_2O_5 (b).

164

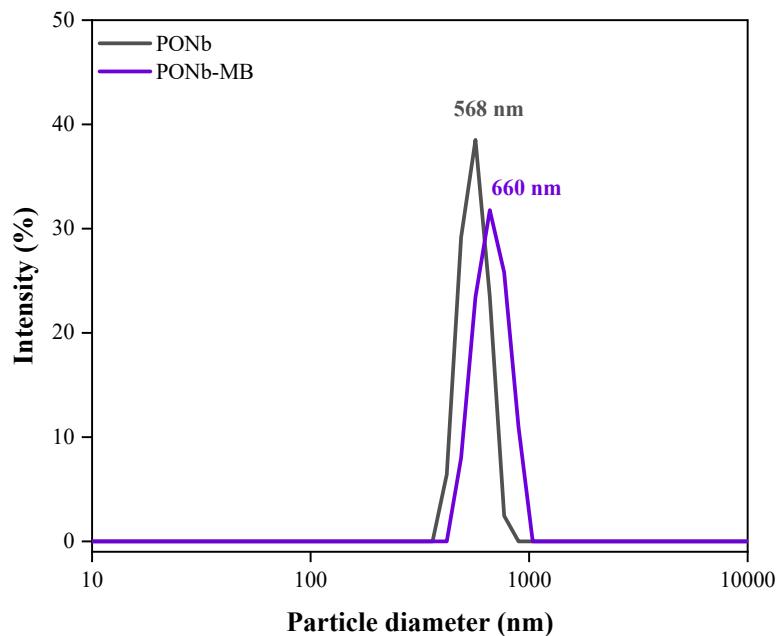
165

166 **Figure S7.** XRD of polyoxoniobate after solvent evaporation (a) and the phase identification using
167 the Powder Diffraction File (PDF) database (JCPDS, International Center for Diffraction Data) (b).

168

169 The UV-Vis spectra, shown below, indicate the presence of the compounds even in the
170 presence of the culture media, attesting to their stability.

171



172

173 **Figure S8.** UV-Vis spectra in the presence of the culture media.

174

175 The PONb and PONb-MB compounds are organized in clusters. Through DLS (diffuse light
176 scattering) analysis, it was possible to infer the size of these particles. As expected, the results
177 obtained (Figure X) showed that PONb-MB has a larger particle size (660 nm) when compared to
178 PONb (568 nm), since MB is coupled to the structure.

179

180

Figure S9: Particle size distribution to PONb band PONb-MB.

181

182 **REFERENCES**

183 1 J. Geng, Q.; Liu, Q.; Ma, P.; Wang, J.; Niu, *Dalt. Trans.*, 2014, **43**, 9843–9846.
 184 2 E.-B. Si, Y.-L.; Wang, *Mol. Phys.*, 2009, **107**, 1521–1526.
 185 3 C. Deblonde, G. J. P.; Coelho-Diogo, C.; Chagnes, A.; Cote, G.; Smith, M. E.; Hanna, J. V.;
 186 Iuga, D.; Bonhomme, *Inorg. Chem.*, 2016, **55**, 5946–5956.
 187 4 D. A. McQuarrie, *Statistical Thermodynamics*, University Science Books, Mill Valey, 1973.
 188 5 Ziolek, M., Sobczak, I., *Catal. Today*, 2017, **285**, 211–225.
 189 6 H. W. P. Esteves, A.; Oliveira, L.C.A.; Ramalho, T.C.; Gonçalves, M.; Anastácio, A. S.;
 190 Carvalho, *Catal. Commun.*, 2008, **10**, 330–338.
 191 7 P. Chagas, H. S. Oliveira, R. Mambrini, M. Le Hyaric, M. V. De Almeida and L. C. A.
 192 Oliveira, *Appl. Catal. A Gen.*, 2013, **454**, 88–92.
 193