Supplementary Information

Engineering long-term controlled drug release from biodegradable devices 3D printed with vat polymerization

Hafiz Busari^{1,2}, O. Thompson Mefford^{2,3}, M. Aaron Vaughn^{1,3}

¹Poly-Med, Inc., Anderson, SC 29625, USA

²Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA

³Department of Bioengineering, Clemson University, Clemson, SC 29634, USA

⁴Department of Chemistry, Clemson University, Clemson, SC 29634, USA

Fable S1: Working curve values from drug loaded photoset resin								
Model Drug	$E_{c} (mJ/cm^{2})$	$D_{p}(\mu m)$	Exposure time for 30 µm layer (s)					
None	56.82 ± 1.38	260 ± 10	1.41 ± 0.03					
Rhodamine B (RhB)	42.95 ± 0.66	360 ± 30	1.02 ± 0.02					

Figure S1. Theoretical dimensional analysis of (A) strut size (B) Pore size using 3 mm gyroid as an example.

Table S2: Surface area	(SA)	, Volume ((V).	, SA/V	of solid	cylinder	diameter	series
------------------------	------	------------	------	--------	----------	----------	----------	--------

	Surface area (mm ²)	Volume (mm ³)	SA/V (mm ⁻¹)
1 mm solid cylinder	39.22	9.38	4.18
3 mm solid cylinder	127.04	84.42	1.50
6 mm solid cylinder	282.39	338.24	0.83

	Surface area (mm ²)	Volume (mm ³)	SA/V (mm ⁻¹)	Strut length (mm)	Pore size (mm)
4 mm gyroid	428.30	219.48	1.95	2.3	1.6
3 mm gyroid	468.69	163.18	2.87	1.4	1.6
2 mm gyroid	556.90	102.62	5.43	0.7	1.6

Table S3: Surface area (SA), Volume (V), SA/V, strut length, and pore size of unit cell series

Table S4: Surface area (SA), Volume (V), SA/V, strut length, and pore size of lattice type series

	Surface area (mm ²)	Volume (mm ³)	SA/V (mm ⁻¹)	Strut length (mm)	Pore size (mm)
3 mm primitive	349.56	179.44	1.95	1.4	3.0
3 mm gyroid	468.69	163.18	2.87	1.4	1.6
3 mm Fisher-Koch	725.51	158.37	4.58	0.8	1.0

Table S5: Surface area (SA), Volume (V), SA/V, strut length, and pore size of pore size series

	Surface	Volume	$SA/V (mm^{-1})$	Strut length	Pore size
	area (mm ²)	(mm^3)	574 V (IIIII)	(mm)	(mm)
2.5 mm poresize	342.37	119.26	2.87	1.4	2.45
1.6 mm poresize	468.69	163.18	2.87	1.4	1.6
0.75 mm poresize	659.31	247.35	2.67	1.4	0.75

Table S6: 6 mm RhB loaded cylinder drug loading. 6 mm samples were freeze milled and extracted with Methanol for 14 d. 6 mm RhB drug loaded samples freeze-milled and extracted with 30 mL of methanol over 7 d at $37 \,^{\circ}\text{C}$

Theoretical amount of RhB (mg)	Amount extracted (mg)	Drug loading (%)
0.8	0.76 ± 0.01	95 ± 1

Figure S2. Fitting results of in vitro drug release data from 3 mm RhB loaded cylinder

Table S7: Kinetic	fitting data	a of 3 mm RhB	loaded c	ylinder u	p to 56 d
-------------------	--------------	---------------	----------	-----------	-----------

Custom curve fit	Coet	Coefficients and 95% confidence bounds			R- Square	DFE	RMSE
$f(x) = 4*((a*x).^0.5)$	a 0.3733	Lower 0.3488	Upper 0.3977	2.8979	0.9877	9	0.5674

Figure S3. Drug release kinetics obtained for the diameter series fitted to the Korsmeyer-Peppas model. (A-C) Kinetic fit up to 60% of release for the 1 mm, 3 mm and 3 mm cylinder. (D-F) Kinetic fit up to 35 d, 56 d, and 84 d for the 1 mm, 3 mm, and 6 mm cylinders, respectively.

Figure S4. Visible light images of the clyinders at 84 d of release.

Figure S5. Zero-order kinetic fit of release data from diameter series after plateau.

Figure S6. Percent gel fraction of unit cell series.