Supplementary Information (SI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Functional 2D MXene-DNA Hybrid Hydrogel for Portable Detection of Blood Disorder Biomarker Thrombin in Human Plasma

Vinod Morya¹, Dhiraj Bhatia¹, Chinmay Ghoroi^{2*}, Amit K. Yadav^{1*}

¹ Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Near Palaj, Gandhinagar-382355, INDIA

² Chemical Engineering, Indian Institute of Technology Gandhinagar, Near Palaj, Gandhinagar-382355, INDIA

> *Correspondence to: Amit K. Yadav (<u>vadav.amit@iitgn.ac.in</u>); Chinmay Ghoroi (<u>chinmayg@iitgn.ac.in</u>)

Table S1. Sequence of oligos used in the study.

#	Oligo	Sequence (5'-3')
1	Apt1 (Aptamer for thrombin)	5'- [ThiC6] -ACT GTG GTT GGT GTG GTT GG-3'
2	Apt2 (cDNA for Apt1)	5'- [ThiC6] -ACC AAC CAC AGT-3'
3	Apt3 (Aptamer for Ampicillin)	5'- [ThiC6] -GCG GGC GGT TGT ATA GCG G-3'
4	Apt4 (cDNA for Apt3)	5'- [ThiC6] -CCG CTA TAC AAC -3'

Schematic S1. Depiction of the proposed thrombin detection set-up with MXene-DNA

hybrid hydrogel.

Figure S1. Schematic representation of the setup for sputtering to develop the Pt-printed glass electrode with a mask.

Figure S2. Energy dispersive x-ray (EDX) elemental mapping of (a) MXene and (b) MXene-DNA complex.

Figure S3. Detection of Ampicillin concentration. (a) Calibration curve from the different concentrations of Ampicillin. (Linear regression fit for initial four points is in red line) (b) A bar graph of the resistance value was observed from different concentrations of Ampicillin and

Tetracycline. The calculated LOD for Ampicillin was 0.1155 mg/L, and the resolution was 0.0597 mg/L.

Figure S4: Hanes-Woolf plot between [Thrombin conc.] and [Thrombin conc./change in resistance] for kd value determination.

Table S2: Quantification of thrombin in unknown samples

Sample	Conc. Spiked	Conc. Measured	Recovery (%)	RSD (%)	
	(mg/L)	(mg/L)			
1	60	68	113.3	8.84	

The limit of detection (LOD) and the resolution calculated by the following equations ¹.

$$LOD = multiplication factor (3.3) \times SD_{blank}$$
 Eq. (S1)

$$SD_{blank} = \sqrt{\frac{\sum (X_i - X_{blank})^2}{N_{blank} - 1}}$$

Where,

 X_i is each individual measurement of the blank signal.

 \bar{X}_{blank} is the mean of the blank signal.

 N_{blank} is the number of measurements in the blank.

Table S3: Mean and Standard deviation (SD) values for thrombin detection

Thrombin Conc.	Resistivity	Resistivity	Mean	Standard
(mg/L)	(MΩ)	(MΩ)		Deviation (SD)
Blank	3.36	3.444	3.402	0.042
10	4.6	4.2	4.4	0.2
50	5.1	5.3	5.2	0.1
100	6.8	6.5	6.65	0.15
200	8.3	8.6	8.45	0.15

Table S4: Mean and Standard deviation (SD) values for Ampicillin detection

Ampicillin	Resistivity	Resistivity	Mean	Standard	
Conc. (mg/L)	(MΩ)	(MΩ)		Deviation (SD)	
Blank	2.91	2.98	2.945	0.035	
0.1	3.76	3.98	3.87	0.11	
0.5	4.58	4.92	4.75	0.17	
1	5.8	6.26	6.03	0.23	
2.5	8.32	8.67	8.495	0.175	
5	9.06	9.32	9.19	0.13	

References

1 D. C. Harris, *Quantitative chemical analysis*, Macmillan, 2010.