Supporting Information

Improving extracellular matrix penetration with biocatalytic metal-organic framework nanoswimmers

Qianfan Chen^{1,3}, Si Liu^{2,3}, Peijun Qin¹, Jueyi Xue^{2,3}, Peiji Deng^{2,3}, Ziping Li^{2,3}, John

Whitelock¹, Tianruo Guo¹, Kang Liang^{1,2,3}*

¹Graduate School of Biomedical Engineering, The University of New South Wales, Sydney

2052, NSW, Australia

²School of Chemical Engineering, The University of New South Wales, Sydney 2052, NSW,

Australia

³Australian Centre for NanoMedicine, The University of New South Wales, Sydney 2052,

NSW, Australia

Figure S1. Schematic representation of the model geometry. The experimental setup is depicted with a container filled with H_2O_2 solution, modeled as a rectangular domain. The collagen film is represented as a thin rectangular region positioned at the bottom of an internal support structure within the container.

Figure S2. SEM images of different ZIF-90 nanoparticles.(a) ZIF-90. (b) Catalase@ZIF-90. (c) Collagenase@ZIF-90. (d) Catalase-Collagenase@ZIF-90-DOX.

Figure S3. CLSM Images of CAT-COL@ZIF-90 containing (a) bright-field image, and (b) fluorescence overlay image. (green = FITC-catalase, blue = atto633-collagenase)

Figure S4. FTIR spectra of ZIF-90 before and after the addition of catalase.

Figure S5. Standard curves used for calculating (a) catalase, (b) collagenase and (c) DOX loading.

Figure S6. Changes in oxygen concentration in different solutions after the addition of various ZIF-90 samples.

Figure S7. Glass slide used for motion tracking.

Figure S8. Representative nanomotor motion trajectories at a hydrogen peroxide concentration of 0 mM.

Figure S9. Representative nanomotor motion trajectories at a hydrogen peroxide concentration of 50 mM.

Figure S10. Representative nanomotor motion trajectories at a hydrogen peroxide concentration of 100 mM.

Figure S11. Representative nanomotor motion trajectories at a hydrogen peroxide concentration of 200 mM.

Figure S12. Average speeds of different nanomotors under $200 \text{ mM } H_2O_2$.

Figure S13. CLSM images of nanomotors co-cultured with 4T1 cells: (a) catalase fluorescence (green), (b) collagenase fluorescence (blue), (c) merged fluorescence image, and (d) corresponding bright-field image.

Figure S14. Fluroescence intensity change with time of FITC-labelled gelatin decomposition catalyzed by the nanomotors.

Figure S15. XRD patterns of the nanomotors before and after gelatin treatment.

Figure S16. Crosssectional SEM images of collagen films prepared at different thicknesses. (a) 2μ m-thickness and (b) 5μ m-thickness.

Figure S17. Photograph of the model used to test the nanomotor's ECM penatration ability (a) 24-well plate with Transwell; (b) Transwell with collagen film.

Figure S18. SEM images of collagen film re-hydrated with $(a)H_2O_2$ solution, (b) ZIF-90-DOX, (C) CAT@ZIF-90-DOX after drying.

Figure S19. Example of the model mesh.

Figure S20. Simulated nanomotor penetration through the collagen film in COMSOL Multiphysics environment. (a) ZIF-90-DOX with 1 μ m-thickness collagen film; (b) CAT-COL@ZIF-90-DOX with 2 μ m-thickness collagen film; (c) CAT-COL@ZIF-90-DOX with 4 μ m-thickness collagen film.

Figure S21. Penetration efficiency of nanomotors in water and 100 µM H₂O₂ solution.

Figure S22. Confocal microscopy images after co-culturing the spheroids with (a) ZIF-90-DOX; (b) CAT@ZIF-90-DOX and (c) CAT-COL@ZIF-90-DOX.

Figure S23. Confocal microscopy images of the spheroids with added ZIF-90: (a) dead cells; (b) live cells.

Figure S24. Confocal microscopy images of spheroids with added CAT@ZIF-90-DOX: (a) dead cells, (b) live cells and (c) DOX.