#### $Ti_3C_2T_x$ and $Mo_2TiC_2T_x$ MX ene-based biocompatible

# supercapacitors for implantable medical devices

Dhrubajyoti Chowdhury<sup>1</sup><sup>a</sup>, Sreejesh Moolayadukkam<sup>2,3</sup><sup>a</sup>, Priyankan Datta<sup>2</sup>, Ishwar K. Puri<sup>1,2,4\*</sup>

<sup>1</sup>Mork Family Department of Chemical Engineering and Material Science, University of Southern California, Los Angeles, CA 90089, United States
<sup>2</sup>Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
<sup>3</sup>Iovine and Young Academy, University of Southern California, Los Angeles, CA 90089, United States
<sup>4</sup>Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, United States
<sup>a</sup>Equal contribution

\*Corresponding author: ikpuri@usc.edu

## Calculations of c-lattice parameter (c-LP) from XRD plots

The XRD plots were used to identify the crystalline peaks for both S-MXene and D-MXene. At the (002) peak of S-MXene and D-MXene, the c-lattice parameter (c-LP) is calculated to confirm its expansion compared to the c-LP of S-MAX and D-MAX.

The c-lattice parameter (c-LP) is calculated as twice the amount of d-spacing at (002) peak position ( $d_{002}$ ) as described in the following equation,<sup>1,2</sup> i.e.,

$$n\lambda = 2d_{002}sin2\theta \tag{1}$$

$$c - LP = 2d_{002} \tag{2}$$

where *n* denotes an integer (usually taken as 1),  $\lambda$  wavelength of incident X-ray beam (1.54Å),

 $d_{002}$  d-spacing in the (002) plane,  $2\theta$  angle of diffraction, c - LP c-lattice parameter.

## Williamson-Hall analysis from XRD plots

The lattice micro-strain has been studied using the Williamson-Hall analysis. As per equation  $3^3$ , the slope of  $\beta \cos(\theta)$  and  $4\sin(\theta)$  gives us the value of  $\varepsilon$ , which is the lattice micro-strain.

**Figure S1.** Williamson-Hall analysis of a) S-MXene and b) D-MXene, where the negative slope indicates compressive lattice micro-strain.



**Figure S2.** X-ray diffraction (XRD) image of D-MAX initially etched for 5 days, where D-MAX persists

| Material | The angular position of | c-LP (Å) |
|----------|-------------------------|----------|
|          | (002) peak (°)          |          |
| S-MXene  | 7.35                    | 12.05    |
| D-MXene  | 6.90                    | 12.83    |

| Table S1. c-LF | calculation | for S-MXene | and D-MXene |
|----------------|-------------|-------------|-------------|
|----------------|-------------|-------------|-------------|



**Figure S3.** Selected area diffraction (SAED) pattern for a) S-MXene and b) D-MXene, where both MXenes show their corresponding crystalline plane.

| Table S2.  | Calculation | for the | crystalline | plane | observed   | from | SAED  |
|------------|-------------|---------|-------------|-------|------------|------|-------|
| I abit 52. | Culturion   | 101 the | orystamme   | prune | 00501 / 04 | nom  | DILLD |

| Material | Diameter of the | d -spacing        | Corresponding | Crystalline |
|----------|-----------------|-------------------|---------------|-------------|
|          | circle (1/D)    | measured from     | peak measured | plane       |
|          | (1/nm)          | SAED = Radius     | from XRD (°)  | observed in |
|          |                 | of the circle (r) |               | SAED        |
|          |                 | (nm)              |               | pattern     |
| S-MXene  | 7.44            | ~0.26nm           | 33.7          | (220)       |
| D-MXene  | 10.12           | ~0.19nm           | 44.7          | (015)       |



**Figure S4.** a) Human dermal fibroblast (HDF) cell viability (%) for both MXenes, b) Fluorescence images of live and dead cells for the control group, S-MXene, and D-MXene. After 24 h of incubation in the presence of both MXenes ( $30 \mu g ml^{-1}$ ), cells are co-stained with Calcein AM and BOBO 3 iodide and incubated for 15 min. Images are obtained with a Lecia Microsystem Inc. microscope using a standard FITC/Texas Red filter (488/570). S-MXene and D-MXene have no significant effect on cell viability, confirming the biocompatibility of both MXenes.

**Table S3.** Cell viability (%) of control, S-MXene and D-MXene when incubated for 5 days (120h)

| Sample  | Cell viability (%) |
|---------|--------------------|
| Control | $112.9 \pm 7.58$   |
| S-MXene | $97.34 \pm 11.04$  |
| D-MXene | $107.1 \pm 6.179$  |



**Figure S5.** Electrochemical performance of S-MXene and D-MXene in 1 M  $H_2SO_4$  solution. Electrochemical performance of S-MXene a) CV at 2, 5, 10, 20, 50, and 100 mV/s scan rates, b) GCD plots measured at 0.1, 0.2, 0.3, 0.5, 0.6, 0.8 and 1 A g<sup>-1</sup> current densities, electrochemical performance of D-MXene c) CV at 2, 5, 10, 20, 50, and 100 mV s<sup>-1</sup> scan rates, d) GCD plots measured at 0.1, 0.2, 0.3, 0.5, 0.6, 0.8 at 1 A g<sup>-1</sup> current densities, and e) specific capacitance comparison of S-MXene and D-MXene. The GCD plots were used to calculate specific

capacitance for the MXene, and f) Electrochemical impedance spectroscopy (EIS) of S-MXene and D-MXene MXenes in 1 M  $H_2SO_4$  electrolyte, (inset) the circuit used for modeling, where  $R_s$ : solution resistance,  $C_{dl}$ : double layer capacitance at the electrode surface,  $R_{ct}$ : charge transfer resistance,  $Z_w$ : Warburg resistance. Higher charge transfer resistance ( $R_s$ ) was obtained for D-MXene, while S-MXene displayed higher capacitance. The GCD plots were used to calculate specific capacitance for both the MXenes. S-MXene showed superior performance.

|                                     | Material             |                                      |                      |                                      |  |  |
|-------------------------------------|----------------------|--------------------------------------|----------------------|--------------------------------------|--|--|
| Electrolyte                         | S-M2                 | Kene                                 | D-MX                 | Kene                                 |  |  |
|                                     | Current density      | C <sub>sp</sub> (F g <sup>-1</sup> ) | Current density      | C <sub>sp</sub> (F g <sup>-1</sup> ) |  |  |
|                                     | (A g <sup>-1</sup> ) |                                      | (A g <sup>-1</sup> ) |                                      |  |  |
|                                     | 0.1                  | 80.12                                | 0.1                  | 18.33                                |  |  |
|                                     | 0.2                  | 59.98                                | 0.2                  | 9.83                                 |  |  |
|                                     | 0.3                  | 52.91                                | 0.3                  | 6.97                                 |  |  |
| 1 M H <sub>2</sub> SO <sub>4</sub>  | 0.5                  | 47.69                                | 0.5                  | 7.00                                 |  |  |
|                                     | 0.6                  | 45.98                                | 0.6                  | 5.29                                 |  |  |
|                                     | 0.8                  | 44.36                                | 0.8                  | 4.71                                 |  |  |
|                                     | 1.0                  | 44.30                                | 1.0                  | 4.77                                 |  |  |
|                                     | Current density      | C <sub>sp</sub> (F g <sup>-1</sup> ) | Current density      | C <sub>sp</sub> (F g <sup>-1</sup> ) |  |  |
|                                     | (A g <sup>-1</sup> ) |                                      | (A g <sup>-1</sup> ) |                                      |  |  |
|                                     | 0.1                  | 34.76                                | 0.1                  | 1.39                                 |  |  |
|                                     | 0.2                  | 22.18                                | 0.2                  | 0.47                                 |  |  |
| 1 M Na <sub>2</sub> SO <sub>4</sub> | 0.3                  | 20.96                                | 0.3                  | 0.48                                 |  |  |
|                                     | 0.5                  | 20.42                                | 0.5                  | 1.16                                 |  |  |
|                                     | 0.6                  | 18.08                                | 0.6                  | 0.71                                 |  |  |
|                                     | 0.8                  | 20.54                                | 0.8                  | 0.80                                 |  |  |
|                                     | 1.0                  | 19.41                                | 1.0                  | 0.81                                 |  |  |
|                                     | Current density      | C <sub>sp</sub> (F g <sup>-1</sup> ) | Current density      | C <sub>sp</sub> (F g <sup>-1</sup> ) |  |  |
|                                     | (A g <sup>-1</sup> ) |                                      | (A g <sup>-1</sup> ) |                                      |  |  |

**Table S4.** Summary of the C<sub>sp</sub> values obtained for the different electrolytes for both S-MXene and D-MXene

|     | 0.1 | 38.37 | 0.1 | 7.25 |
|-----|-----|-------|-----|------|
|     | 0.2 | 27.91 | 0.2 | 4.66 |
| PBS | 0.3 | 26.24 | 0.3 | 3.74 |
|     | 0.5 | 26.16 | 0.5 | 3.06 |
|     | 0.6 | 24.57 | 0.6 | 2.93 |
|     | 0.8 | 25.96 | 0.8 | 2.35 |
|     | 1.0 | 26.90 | 1.0 | 2.66 |

Table S5. EIS data obtained for both S-MXene and D-MXene in 1 M  $\rm H_2SO_4$ 

|                              | Material                  |                           |  |  |  |  |
|------------------------------|---------------------------|---------------------------|--|--|--|--|
| Component<br>values obtained | S-MXene                   | D-MXene                   |  |  |  |  |
| R <sub>s</sub>               | 6.24 Ω                    | 13.9 Ω                    |  |  |  |  |
| C <sub>dl</sub>              | 3.56 µF                   | 1.74 μF                   |  |  |  |  |
| R <sub>ct</sub>              | 5 Ω                       | 3.18 μΩ                   |  |  |  |  |
| Zw                           | 8.44 nMhos <sup>1/2</sup> | 96.7 nMhos <sup>1/2</sup> |  |  |  |  |



**Figure S6.** Electrochemical performance of S-MXene and D-MXene in 1 M Na<sub>2</sub>SO<sub>4</sub> solution. Electrochemical performance of S-MXene a) CV at 2, 5, 10, 20, 50, and 100 mV/s scan rates, b) GCD plots measured at 0.1, 0.2, 0.3, 0.5, 0.6, 0.8 and 1 A g<sup>-1</sup> current densities, electrochemical performance of D-MXene c) CV at 2, 5, 10, 20, 50, and 100 mV s<sup>-1</sup> scan rates, d) GCD plots measured at 0.1, 0.2, 0.3, 0.5, 0.6, 0.8 at 1 A g<sup>-1</sup> current densities, e) specific capacitance

comparison of S-MXene and D-MXene, and f) Electrochemical impedance spectroscopy (EIS) of S-MXene and D-MXene in 1 M Na<sub>2</sub>SO<sub>4</sub> electrolyte, (inset) the circuit used for modeling, where  $R_s$ : solution resistance,  $C_{dl}$ : double layer capacitance at the electrode surface,  $R_{ct}$ : charge transfer resistance,  $Z_w$ : Warburg resistance. The steeper slope of S-MXene indicates ideal capacitive behavior. The GCD plots were used to calculate specific capacitance for both the MXenes. S-MXene showed superior performance.

|                              | Material                  |                          |  |  |  |  |
|------------------------------|---------------------------|--------------------------|--|--|--|--|
| Component<br>values obtained | S-MXene                   | D-MXene                  |  |  |  |  |
| R <sub>s</sub>               | 32.4 Ω                    | 20.7 kΩ                  |  |  |  |  |
| C <sub>dl</sub>              | 39.2 nF                   | 12.7 nF                  |  |  |  |  |
| R <sub>ct</sub>              | 208 Ω                     | 60.5 kΩ                  |  |  |  |  |
| Zw                           | 8.01 nMhos <sup>1/2</sup> | 987 nMhos <sup>1/2</sup> |  |  |  |  |

Table S6. EIS data obtained for both S-MXene and D-MXene in 1 M Na<sub>2</sub>SO<sub>4</sub>

Table S7. EIS data obtained for both S-MXene and D-MXene in PBS electrolyte

| Material        |                           |                           |  |  |  |  |
|-----------------|---------------------------|---------------------------|--|--|--|--|
| Component       | D-MXene                   |                           |  |  |  |  |
| values obtained |                           |                           |  |  |  |  |
| R <sub>s</sub>  | 168 Ω                     | 192 Ω                     |  |  |  |  |
| C <sub>dl</sub> | 25 µF                     | 2.36 µF                   |  |  |  |  |
| R <sub>ct</sub> | 500 Ω                     | 700 Ω                     |  |  |  |  |
| Z <sub>w</sub>  | 7.69 nMhos <sup>1/2</sup> | 5.95 nMhos <sup>1/2</sup> |  |  |  |  |



Figure S7. Electrochemical impedance spectroscopy (EIS) of D-MXene in all three electrolytes. A higher starting position of the circle and a higher intercept explain the highest values of  $R_s$  and  $R_{ct}$  measured at 1 M Na<sub>2</sub>SO<sub>4</sub> electrolyte.



**Figure S8.** CV plot of a) S-MXene, b) D-MXene, and c)  $I_p$  vs  $v^{1/2}$  plot for both the MXenes in 5 mM K<sub>3</sub>[Fe(CN)<sub>6</sub>] in 1 M KCl solution. The ECSA for S-MXene is higher for D-MXene.

| Table S8. | Specific | capacitance | of the | supercapacitor | device | in | terms | of its | mean | and | standard |
|-----------|----------|-------------|--------|----------------|--------|----|-------|--------|------|-----|----------|
| deviation |          |             |        |                |        |    |       |        |      |     |          |

| Current density (mA cm <sup>-2</sup> ) | Specific capacitance (mF cm <sup>-2</sup> ) |
|----------------------------------------|---------------------------------------------|
| 0.1                                    | $87.54\pm2.88$                              |
| 0.2                                    | $77.27 \pm 3.58$                            |
| 0.3                                    | $72.42\pm0.92$                              |
| 0.5                                    | $65.50 \pm 2.44$                            |
| 0.6                                    | $61.46 \pm 2.01$                            |
| 0.8                                    | $58.38 \pm 6.54$                            |
| 1.0                                    | $54.99 \pm 8.96$                            |

**Table S9.** Comparison of available literature using aqueous electrolyte with this work shows the values of energy and power density obtained

| Active        | Potential  | Energy           | Power                   | Electrolyte | Reference |
|---------------|------------|------------------|-------------------------|-------------|-----------|
| material      | window (V) | density          | density                 |             |           |
| TiN/Stainless | 1.0        | 1.614 µW h       | 49.98 mW                | PBS         | 4         |
| steel         |            | cm <sup>-2</sup> | cm <sup>-2</sup>        |             |           |
| (Asymmetric)  |            |                  |                         |             |           |
| NbN-TiN       | 0.6        | 1.86 µW h        | 239.14 mW               | PBS         | 5         |
| (Asymmetric)  |            | cm <sup>-2</sup> | cm <sup>-2</sup>        |             |           |
| CNT+PEDOT     | 0.8        | 0.82 µW h        | 2149.8 μW               | PBS         | 6         |
| : PSS         |            | cm <sup>-2</sup> | cm <sup>-2</sup>        |             |           |
| (Symmetric)   |            |                  |                         |             |           |
| S-MXene       | 0.5        | 2.97 μW h        | 500 μW cm <sup>-2</sup> | PBS         | This work |
|               |            | cm <sup>-2</sup> |                         |             |           |

Table S10. Comparison of power densities for supercapacitors working on all-solid electrolytes

| Active    | Biocompatibilit | Electrolyte                               | Biocompatibilit  | Power              | Referenc |
|-----------|-----------------|-------------------------------------------|------------------|--------------------|----------|
| material  | y of active     |                                           | y of electrolyte | densit             | e        |
|           | material        |                                           |                  | У                  |          |
| Graphene- | -               | polyvinylidene                            | -                | 70 kW              | 7        |
| welded    |                 | fluoride-                                 |                  | kg-1               |          |
| activated |                 | hexafluoropropylene                       |                  |                    |          |
| carbon    |                 | $+ EMIMBF_4$                              |                  |                    |          |
| CNT/MnO   | -               | Na <sub>2</sub> SO <sub>4</sub> /Xanthene | -                | 2300               | 8        |
| 2         |                 | gum                                       |                  | μW                 |          |
|           |                 |                                           |                  | cm <sup>-2</sup>   |          |
| Activated | -               | etraglyme(G4)/lithiu                      | -                | 875 W              | 9        |
| carbon    |                 | m salt (LiTFSI)/ionic                     |                  | kg-1               |          |
|           |                 | liquid (EMIM-TFSI)                        |                  | _                  |          |
|           |                 | mixture (GLE)                             |                  |                    |          |
| Activated | -               | 1.3-                                      | -                | 874.8              | 10       |
| carbon    |                 | dimethylimidazoliu                        |                  | W kg <sup>-1</sup> |          |
|           |                 | m                                         |                  | _                  |          |
|           |                 | bis(trifluoromethyl                       |                  |                    |          |
|           |                 | sulfonyl)imide                            |                  |                    |          |
|           |                 | (DMImTFSI)                                |                  |                    |          |
| $V_2O_5$  | -               | PVDF-HFP-PC-                              |                  | 2.3                | 11       |

|                                               |               | Mg(ClO <sub>4</sub> ) <sub>2</sub> |               | kW               |      |
|-----------------------------------------------|---------------|------------------------------------|---------------|------------------|------|
|                                               |               |                                    |               | kg-1             |      |
| Ti <sub>3</sub> C <sub>2</sub> T <sub>x</sub> | Biocompatible | Phosphate buffer                   | Biocompatible | 500              | This |
| MXene                                         | _             | saline (PBS)                       |               | μW               | work |
|                                               |               |                                    |               | cm <sup>-2</sup> |      |

Table S11. Energy and power density comparison of self-powered implantable medical devices

| Configuration               | Energy<br>density         | Power density                   | Reference |
|-----------------------------|---------------------------|---------------------------------|-----------|
| Piezoelectric nanogenerator | -                         | $68 \pm 2.82 \ \mu W \ cm^{-3}$ | 12        |
| Piezoelectric nanogenerator | -                         | 22.5 μW cm <sup>-2</sup>        | 13        |
| Piezoelectric nanogenerator | -                         | 3.75 μW cm <sup>-2</sup>        | 14        |
| Piezoelectric nanogenerator | 125.4 Wh kg <sup>-1</sup> | 1200 W kg <sup>-1</sup> (for    | 15        |
| + supercapacitor            | (for                      | supercapacitor)                 |           |
|                             | supercapacitor)           |                                 |           |

#### **References:**

- 1 Y. Sheng, X. Tang, E. Peng and J. Xue, J. Mater. Chem. B, 2012, 1, 512-521.
- 2A. Pazniak, P. Bazhin, N. Shplis, E. Kolesnikov, I. Shchetinin, A. Komissarov, J. Polcak, A. Stolin and D. Kuznetsov, *Mater. Des.*, 2019, **183**, 108143.
- 3E. M. López-Alejandro, E. Ramírez-Morales, M. C. Arellano-Cortaza, C. A. Meza-Avendaño, D. M. Frías-Márquez, R. Ramírez-Bon and L. Rojas-Blanco, *Ceram. Int.*, in press.
- 4S. Sharma, R. Adalati, M. Sharma, S. Jindal, A. Kumar, G. Malik and R. Chandra, *Ceram. Int.*, 2022, **48**, 34678–34687.
- 5S. Sharma, R. Adalati, N. Choudhary, B. Unnikrishnan, M. Sharma, P. Gopinath and R. Chandra, *J. Alloys Compd.*, 2023, **960**, 170749.
- 6H. J. Sim, C. Choi, D. Y. Lee, H. Kim, J.-H. Yun, J. M. Kim, T. M. Kang, R. Ovalle, R. H. Baughman, C. W. Kee and S. J. Kim, *Nano Energy*, 2018, **47**, 385–392.
- 7C. Li, X. Zhang, Z. Lv, K. Wang, X. Sun, X. Chen and Y. Ma, Chem. Eng. J., 2021, 414, 128781.
- 8N. Yu, X. Wang, S. Zhang, S. Zeng, Y. Zhang, J. Di and Q. Li, RSC Adv., 2019, 9, 8169-8174.
- 9D. Lee, Y. H. Song, U. H. Choi and J. Kim, ACS Appl. Mater. Interfaces, 2019, 11, 42221-42232.
- 10 X. Zhong, J. Tang, L. Cao, W. Kong, Z. Sun, H. Cheng, Z. Lu, H. Pan and B. Xu, *Electrochim. Acta*, 2017, **244**, 112–118.
- 11 A. Jain, S. R. Manippady, R. Tang, H. Nishihara, K. Sobczak, V. Matejka, M. Michalska, *Sci. Rep.*, 2022, **12**, 21024.
- 12 S. Azimi, A. Golabchi, A. Nekookar, S. Rabbani, M. H. Amiri, K. Asadi and M. M. Abolhasani, *Nano Energy*, 2021, **83**, 105781.
- 13 Y. Zhang, L. Zhou, C. Liu, X. Gao, Z. Zhou, S. Duan, Q. Deng, L. Song, H. Jiang, L. Yu, S. Guo and H. Zheng, *Nano Energy*, 2022, **99**, 107420.
- 14 Q. Shi, T. Wang and C. Lee, Sci. Rep., 2016, 6, 24946.
- 15 P. P. Singh, S. K. Si and B. B. Khatua, Chem. Eng. J., 2025, 511, 161802.