Supplementary Information (SI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2025

Supplementary information

Biogenic carbon dots derived from the microwave carbonization of amino acid mixture: Cellular biocompatible, biomolecular probes and live cell imaging agents

- Navya PN^a, Ranjith Kumar Jakku^a, Harishkumar Madhyastha^b, Ruchika Ojha^{a*}, Selvakannan Periasamy^a, Magdalena Plebanski^c, Suresh K Bhargava^{a**}
- ^a Centre for Advanced Materials and Industrial Chemistry, School of Science, STEM College, RMIT University, Melbourne-3000, Australia
- ^b Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki Kihara 5200, Kiyotake Cho, Miyazaki – 8891692, Japan

^c Cancer, Ageing and Vaccines Research Group, School of Health and Biomedical Sciences,

STEM College, RMIT University, Melbourne-3000, Australia

**<u>suresh.bhargava@rmit.edu.au</u>

* ruchika.ojha@rmit.edu.au

Figure S1 (A) Fluorescence emission spectra of G+T-CDs at different excitation wavelength; (B) Fluorescence excitation and emission spectra of G+T-CDs in aqueous solution

Figure S2 Wide XPS spectra of G-CDs (a); Deconvolution for G-CDs in the C1s (b), N1s (c) and O1s (d) binding energy regions

Figure S3 Wide XPS spectra of T-CDs (a); Deconvolution for T-CDs in the C1s (b), N1s (c) and O1s (d) binding energy regions

Figure S4 ¹³C spectra of G+T-CDs, T-CDs and G-CDs

Figure S6 Cellular toxicity assessment of glutamic acid and tryptophan at different concentrations (A) and time intervals (B); Cellular apoptosis study on glutamic acid and tryptophan treated MCF-7 cells (C)

Figure S7 Cellular toxicity assessment of glutamic acid, tryptophan, G-CDs, T-CDs and G+T-CDs at different concentrations on fibroblast cells