Supporting information

A Buoyant Plasmonic Microbubble-based SERS Sensing platform for Amyloid-beta Protein Detection in Alzheimer's Disease

Willis Kwun Hei Ho^{a†}, Qin Zhang^{a,b†*}, Fariza Zhorabe^e, Jiaxiang Yan^a, Yutian Gu^a, Shujun Wang^a, Changqing Yi^f, Yu Zhang^g, Mo Yang^{a,b,c,d *}

^a Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China

^b The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China

^c Research Center for Nanoscience and Nanotechnology, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China

^d Joint Research Center of Biosensing and Precision Theranostics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China

^e Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China

^f Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510000, China

^g Department of Mechanical and Automotive Engineering, Royal Melbourne Institute of Technology, Melbourne VIC 3000, Australia

*Corresponding Authors:

Qin Zhang: qin7zhang@polyu.edu.hk Mo Yang: mo.yang@polyu.edu.hk

[†] Willis Kwun Hei Ho and Qin Zhang contributed equally to this work.

Keywords: Surface-enhanced Raman spectroscopy, PVA microbubbles, plasmonic coupling, amyloid-β, Alzheimer disease

Fig. S1 (a) Size distribution of PVA microbubbles measured by dynamic light scattering (DLS). PVA microbubbles were dispersed in PBS and stored at 4°C. (b) The average diameter of PVA microbubbles in PBS measured by DLS at different time.

Fig. S2 (a) SERS Raman spectra of 4-MBA on Au/MB substrates prepared with different Au⁺ concentrations (0.1, 0.15, 0.25 mM). (b) Zoomed-in SERS spectra of (a). (c) The normalized Raman signal intensity at ~1590 cm⁻¹ measured at Au/MB substrates prepared with different

Au⁺ concentrations. (d) DLS distribution of Au/MB prepared with 0.4 mM Au⁺ precursor dispersed in H₂O for 2 days. Inset: photograph of Au/MB (0.4 mM). (e) DLS distribution of Au/MB prepared with 0.25 mM Au⁺ precursor dispersed in H₂O. Inset: photograph of Au/MB (0.25 mM).

Fig. S3 (a) Raman spectra of the Cu²⁺/4-MBA/Au/MB sensing platform before and after incubation with freshly prepared A β_{1-40} monomers at a concentration of 10⁻⁶M. (b) The enlarged 4-MBA spectra (1300cm⁻¹-1500 cm⁻¹).

Fig. S4 Protonated associated carboxyl group peak intensity before (Black) and after (Red) the incubation with $A\beta_{1-40}$ oligomers.

Fig. S5 Raman spectra of the Cu²⁺/4-MBA/Au/MB sensing platform after incubation in protein dilute buffer (PBS, 10 mM) over time.

Fig. S6 (a) The v8a band in the SERS spectra of Cu^{2+/4}-MBA/Au-MB sensing system before and after incubation with A β_{1-40} protein at a concentration of 10⁻⁶ M in H₂O (black line), PBS (red line), Tris-HCl (green line), and artificial cerebrospinal fluid (aCSF, blue line). (b) The normalized peak intensity of v8a vibration (~1592 cm⁻¹). (c) The v_s(COO⁻–Cu²⁺) band in the SERS spectra of Cu^{2+/4}-MBA/Au-MB sensing system before and after incubation with A β_{1-40} protein at a concentration of 10⁻⁶ M in H₂O, PBS, Tris-HCl, and aCSF buffer. (d) The normalized peak intensity of v_s(COO⁻–Cu²⁺) band (~1388 cm⁻¹).

Fig. S7 Raman spectra of 4-MBA in Au/MB substrate before (black line) and after (red line) coordination with Cu²⁺ ions.

Figure S8. Raman spectra of the out-of-plane v(CCC) bending mode (~718 cm⁻¹) for (a) Cu^{2+}_4 -MBA_Au/MB platform, and (b) Cu^{2+}_4 -MBA_Au/MB platform after incubation with A β_{1-40} protein at a concentration of 10⁻⁶ M. The angle-resolved SERS measurements were

conducted by collecting Raman spectra at angles of 0°, 45°, and 70° relative to the substrate coated in silicon. (c) Ratio of normalized signal intensity of the v(CCC) band calculated as $I_{45}^{\circ}/I_{0}^{\circ}$ and $I_{70}^{\circ}/I_{0}^{\circ}$ for both sample groups.

Fig. S9 Time evolution of van der Waals and electrostatic interaction energies between different molecular pairs during the molecular dynamics (MD) simulation. (a) Cu²⁺/4-MBA interaction; (b) Cu²⁺/A β interaction; (c) 4-MBA/A β interaction. LJ-SR energy reflects short-range van der Waals interactions, while Coulomb-SR energy represents the electrostatic interaction between charged atoms. (d) Snapshots of the MD simulation system at 100 ns before and after the introduction of the A β peptide, illustrating intermolecular interactions, molecular trajectories, and the overall structural change.

 Table S1. Au nanostructure-based SERS platform and ELISA assay-based sensing

 technologies for disease-associated protein detection.

Sensing platform	Methods	Analytes	LoD	Time required	Matrix	Ref.
Plasmonic Au NRs- based substrate	SERS	BSA	50 nM	10-60 min	PBS	1
Ag/Au plasmonic hybrid nanoarray	SERS	Hemoglobin	5 ng/mL	20 min	Urine	2
Gold nanostars (AuNS) substrate	SERS	Protein kinase A	5 mU/mL (~83.3 ng/mL)	Not mentioned	PBS	3
AuNP-WS2 Nanohybrid	SERS	myoglobin	100 ng/mL	15 min	Tris-HCl	4
Au NPs -decorated polystyrene beads	SERS	Amyloid oligomers	100 nM	Not mentioned	PBS	5
Two layers of Au NPs (Au@RRs@AuNPs)	SERS	$A\beta_{1-42}$	0.3 nM (1.2 ng/mL)	Not mentioned	aCSF	6
Plasmonic ELISA- based immunoassay	ELISA	$A\beta_{1\!-\!40}$	50 pM	> 2 h	CSF	7
Commerial $A\beta_{1-40}$ ELISA Kit from Abcam company	ELISA	$A\beta_{1\!-\!40}$	0.1 ng/mL	6-8 h	CSF	8
Au NPs /microbubbles- based substrate	SERS	$A\beta_{1-40}$	1 nM (~4.3 ng/mL)	30 min	Acsf	This work

References

- A. Foti, C. D'Andrea, V. Villari, N. Micali, M. G. Donato, B. Fazio, O. M. Marago, R. Gillibert, M. Lamy de la Chapelle and P. G. Gucciardi, *Materials (Basel)*, 2018, 11, 440.
- J. Wu, Y. Zhang, J. Wang, Z. Ling, X. Yan, X. Lyu, J. Fang, M. Cheng, M. Zhao, T. Ban, Y. Liu and Y. Li, *Anal. Chem.*, 2024, 96, 15735-15745.
- S. He, Y. M. E. Kyaw, E. K. M. Tan, L. Bekale, M. W. C. Kang, S. S. Kim, I. Tan, K. P. Lam and J. C. Y. Kah, *Anal. Chem.*, 2018, 90, 6071-6080.
- 4. M. Shorie, V. Kumar, H. Kaur, K. Singh, V. K. Tomer and P. Sabherwal, *Mikrochim Acta*, 2018, **185**, 158.
- 5. L. Guerrini, R. Arenal, B. Mannini, F. Chiti, R. Pini, P. Matteini and R. A. Alvarez-Puebla, *ACS Appl. Mater. Interfaces*, 2015, **7**, 9420-9428.

- C. Dallari, E. Lenci, A. Trabocchi, V. Bessi, S. Bagnoli, B. Nacmias, C. Credi and F. S. Pavone, ACS Sens., 2023, 8, 3693-3700.
- M. Li, D. Lu, R. You, H. Shen, L. Zhu, Q. Lin and Y. Lu, J. Phys. Chem. C, 2022, 126, 12651-12659.
- H. Li, Y. Tian, S. Yan, L. Ren, R. Ma, W. Zhao, H. Zhang and S. Dou, *Coatings*, 2024, 14, 530.