Supplementary Information (SI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Chromogenic sensor by ecdysis of Au@Ag nanorods assembled in hydrogel for selective ammonia vapors detection in food

Mahima Chandel,¹ Prem Singh,^{2†} Kamaljit Kaur,^{1†} Lalitya Chadalawada¹, T.S. Abhijith,¹ Keshav Bhardwaj², Amit Jaiswal^{2*} and Vijayakumar Shanmugam^{1*}

¹ Institute of Nano Science and Technology, Knowledge City, Sahibzada Ajit Singh Nagar, Punjab 140306, India;

² School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi 175005, Himachal Pradesh, India

Fig. S1 XRD of Aubead@Ag nanorods

Fig. S2 EDX of Aubead@Ag nanorods

Fig. S3 (A) Hydrogel formation with different concentration of agarose (B) color change of hydrogel sensor after ammonia exposure with increase in agarose concentration at room temperature (25°C) and 40% humidity.

Fig. S4 Color contrast after addition of different volumes of Au-Bead@Ag nanorods inside agarose hydrogel at room temperature (25°C) and 40% humidity. Here C: control hydrogel i.e. agarose, CT: control agarose hydrogel exposed to ammonia vapors, B: control-agarose hydrogel with Au-Bead@Ag nanorods and BT: control-agarose hydrogel with Au-Bead@Ag nanorods exposed to ammonia vapors.

Fig. S5 Mechanical strength of hydrogel sensor after incorporation of different concentration of nanorods.

Time Temp.	1 h	1h 30 min	3 h	5 h	24 h	48 h
-20° C		0	0	0		
4° C	1	(C)	9			
25° C						
35° C		8				
40° C						

Fig. S6 Effect of temperature on sensor response after exposure to ~13.4 M ammonia.

Time RH	30 min	1 h	1 h 30 min	2 h	3 h
40%					
50%	Pagen B				
60%			3		
70%		A. S.			
80%	0				

Fig. S7 Effect of humidity on sensor response at 25°C after exposure to ~13.4 M ammonia.

Fig. S8 Different gels exposed to ammonia at room temperature (25°C) and 40% humidity.

	01	тт	1	C.	•	
Table	SI	pН	change	after	ammonia	exposure
		1	\mathcal{O}			1

S.No.	Sample Name	рН
1	Control (C)	8.3
2	Control + Treatment (CT)	12.8
3	Au-Bead@Ag Nanorods (B)	10.3
4	Au-Bead@Ag Nanorods + Ammonia Treatment (BT)	12.7

Fig. S9 AFM images of B: control-agarose hydrogel with Au-Bead@Ag nanorods and BT: control-agarose hydrogel with Au-Bead@Ag nanorods exposed to ammonia vapors.

Fig. S10 Refractometer readings of hydrogel sensor before (B) and after ammonia exposure (BT).

Fig. S11 Narrow scan of Ag of: Au-Bead@Ag nanorods, B: control-agarose hydrogel with Au-Bead@Ag nanorods and BT: control-agarose hydrogel with Au-Bead@Ag nanorods exposed to ammonia vapors.

Fig. S12 Hydrogel sensor containing Au bead only before and after exposure of ammonia at room temperature (25°C) and 40% humidity.

Fig. S13 Stability of hydrogel sensor by keeping it at room temperature for few days followed by testing its performance at room temperature (25°C) and 40% humidity.

Fig. S14 Representative image of linear relationship of color change (RGB intensity) w.r.t. (A) increase in concentration (after 24 h of spiking ammonia) and (B) time (after spiking with 13.4 M concentration of ammonia in meat sample).

Fig. S15 Practicality of sensor in chicken sample at room temperature (25°C) and 40% humidity showing color change after 24 hours.