Supplementary Information (SI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2025

Supporting Information

Rapid Electrochemical Sensing of Arsenic-Based Feed Additive using a Neodymium Orthovanadate-Modified Electrode: A Tool for Minimizing Arsenic Exposure-Linked Kidney and Cardiovascular Health Risks

Sakthivel Kogularasu^{a,b+}, Balasubramanian Akila^{c+}, Tse-Wei Chen^{d,e}, Shen-Ming Chen^{c,*}, Yung-Lung Chen^{f,g}, Wan-Ching Lin^{h,i}, Guo-Ping Chang-Chien^{a,b*}

^aCenter for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung, 833301, Taiwan

^bInstitute of Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University,

Kaohsiung, 833301, Taiwan

^cDepartment of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan

^dDepartment of Materials, Imperial College London, London, SW7 2AZ, United Kingdom

eNational Kaohsiung University of Science and Technology, Kaohsiung, 807, Taiwan

^fDivision of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial

Hospital, College of Medicine, Chang Gung University, Kaohsiung, 833, Taiwan

^gGraduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan

^hDepartment of Neuroradiology, E-Da Hospital, I-Shou University, Kaohsiung, 84001, Taiwan ⁱDepartment of Neurosurgery, E-Da Hospital, I-Shou University, Kaohsiung, 84001, Taiwan. ⁺Authors contributed equally.

*Corresponding authors:

<u>smchen78@ms15.hinet.net</u> (S.-M. Chen); <u>guoping@gcloud.csu.edu.tw</u> (G-P Chang-Chien)

Methods	Linear range (µM)	LOD (nM)	Ref.
DPV	0.025–2650	12.4	S1
DPV	0.05–490	30	S2
DPV	0.01–1130	2	S3
DPV	0.035–1816.5	22.5	S4
LSV	0.05-83.15	6	S5
DPV	0.1-442.6	75	S6
DPV	0.02–0.20	40	S7
DPV	0.01–453.4	4.3	S8
DPV	0.01–191.04	1.3	This work

Table S1. Comparison of RAS detection performances of NdVO₄/GCE with other RAS sensors.

Figure S1. (A) Anti-interfering study of NdVO₄/GCE in the presence of RAS with co-interferents compounds and **(B)** corresponding bar diagram for interfering compounds versus currents responses.

Figure S2. (A) Reproducibility study and (B) cyclic stability of NdVO₄/GCE in the presence of RAS.

References

- S1. Sriram, B., Kogularasu, S., Hsu, Y.F., Wang, S.F. and Sheu, J.K., 2022. Fabrication of praseodymium vanadate nanoparticles on disposable strip for rapid and real-time amperometric sensing of arsenic drug roxarsone. Inorganic Chemistry, 61(41), pp.16370-16379.
- S2. Govindasamy, M., Wang, S.F., Jothiramalingam, R., Noora Ibrahim, S. and Al-Lohedan, H.A., 2019. A screen-printed electrode modified with tungsten disulfide nanosheets for nanomolar detection of the arsenic drug roxarsone. *Microchimica Acta*, 186, pp.1-10.
- S3. Kokulnathan, T., Rajagopal, V., Wang, T.J., Huang, S.J. and Ahmed, F., 2021. Electrochemical behavior of three-dimensional cobalt manganate with flowerlike structures for effective roxarsone sensing. *Inorganic Chemistry*, 60(23), pp.17986-17996.
- S4. Govindasamy, M., Rajaji, U., Wang, S.F., Chang, Y.J., Ramalingam,R.J. and Chan, C.Y., 2020. Investigation of sonochemically synthesized

sphere-like metal tungstate nanocrystals decorated activated carbon sheets network and its application towards highly sensitive detection of arsenic drug in biological samples. *Journal of the Taiwan Institute of Chemical Engineers*, *114*, pp.211-219.

- S5. Altama, A.K., Sriram, B., Elanthamilan, E., Chu, J.P., Liao, Y.L. and Wang, S.F., 2024. Hierarchical graphene oxide/nano-pyramidal stainlesssteel on nickel foam substrate: a flexible electrochemical sensor for arsenic compound detection. *Journal of Environmental Chemical Engineering*, 12(6), p.114179.
- S6. Chen, T.W., Rajaji, U., Chen, S.M., Chinnapaiyan, S. and Ramalingam, R.J., 2019. Facile synthesis of mesoporous WS2 nanorods decorated N-doped RGO network modified electrode as portable electrochemical sensing platform for sensitive detection of toxic antibiotic in biological and pharmaceutical samples. *Ultrasonics Sonochemistry*, 56, pp.430-436.
- S7. Ramanathan, S., Elanthamilan, E., Obadiah, A., Durairaj, A., Santhoshkumar, P., Merlin, J.P., Ramasundaram, S. and Vasanthkumar, S., 2019. Electrochemical Detection of Trace Amounts of Arsenic (III) in Poultry Using a Graphene Oxide-Bis (2-(4, 5-diphenyl-1 H-imidazol-2-yl) phenoxy) Cobalt Composite Modified Electrode. *Journal of Electronic Materials*, 48, pp.4498-4506.
- S8. Tamilalagan, E., Akilarasan, M., Chen, S.M., Govindasamy, M., Lin, K.Y., Alzahrani, F.M. and Alsaiari, N.S., 2023. Construction of perovskite structured ZnSnO3 embedded graphene oxide nanosheets for in-situ electrochemical quantification of organoarsenic roxarsone. *Process Safety* and Environmental Protection, 171, pp.705-716.