
Supplementary Information (SI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2025

## **Supplementary materials**



**Fig. S1** Viability of A549 and mesenchymal stem cells—cultured with various concentrations of gelatin hydrogels. **(A)** The cell viability of A549 cells was measured via CCK8 assay after incubation with different concentrations of gelatin hydrogels for 96 h. **(B)** The cell viability of mesenchymal stem cells was measured via CCK8 assay after incubation with different concentrations of gelatin hydrogels for 96 h. Data are plotted as mean  $\pm$  standard deviation. n = 3.



**Fig. S2** Collagen bundles in tumor tissue. **(A)** The Masson staining image of the collagen bundles in tumor tissue. Scale bar, 100 μm. **(B)** The presence of collagen bundles in lung cancer organoid promoted tumor cell aggregation. Scale bar, 100 μm.

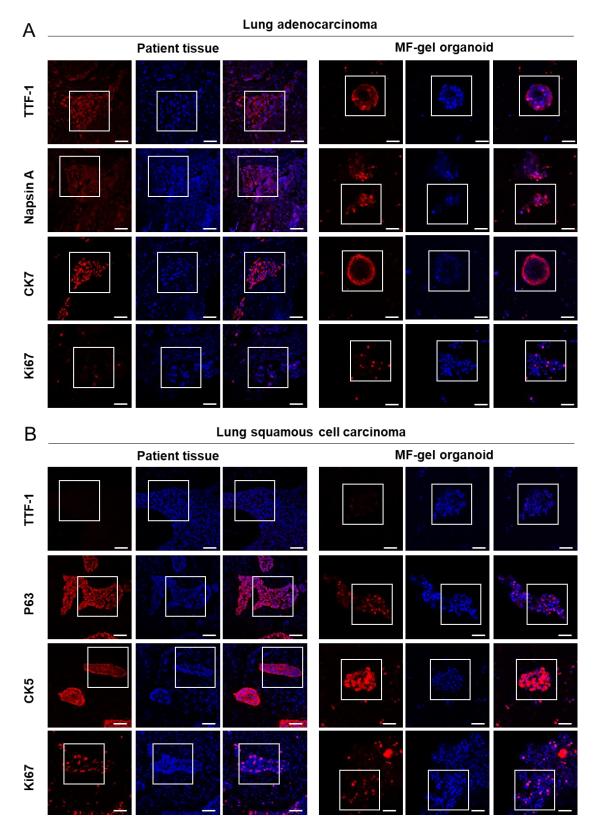
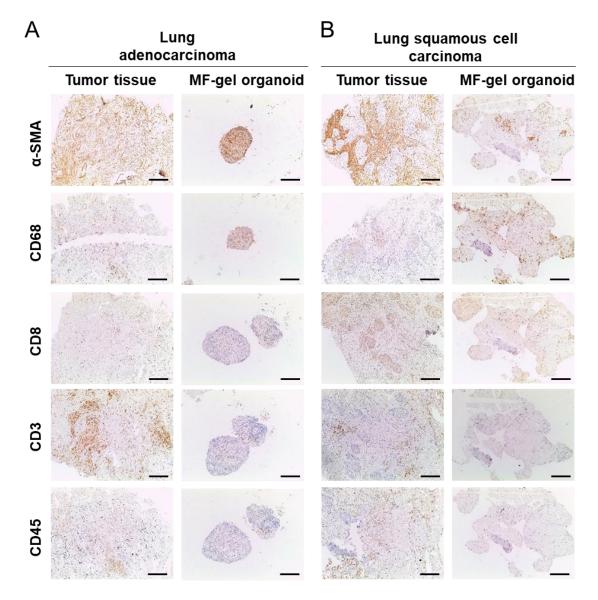
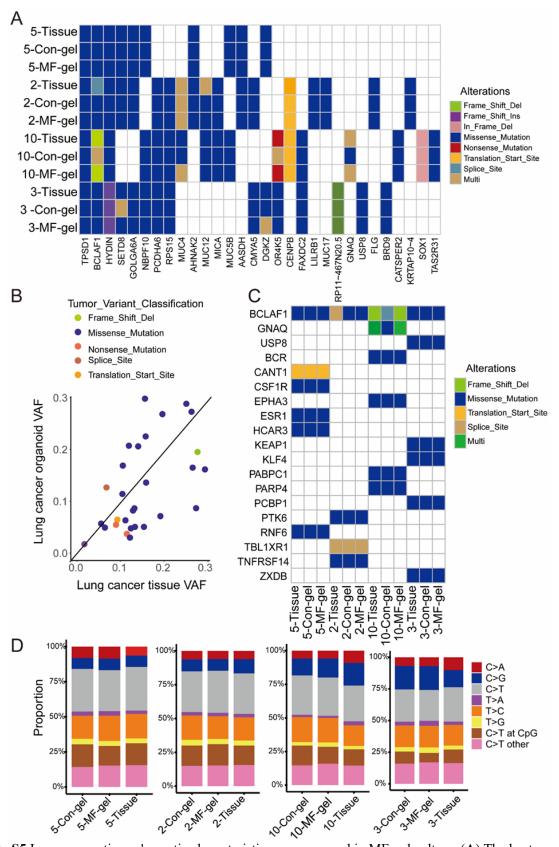
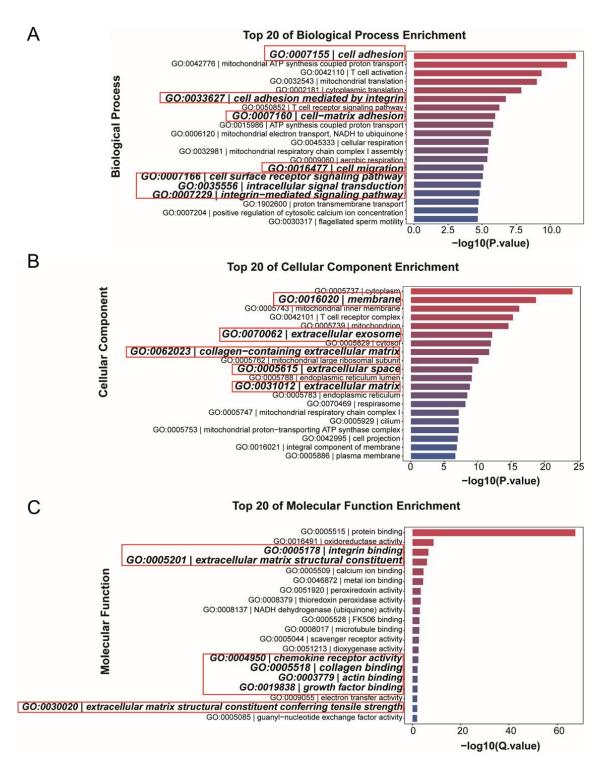



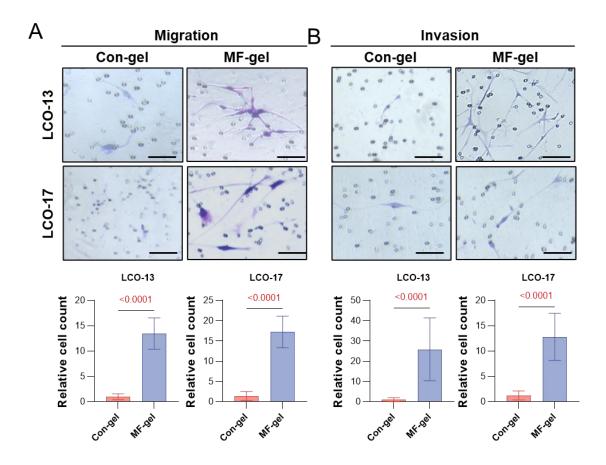

Fig. S3 Single-channel and merged immunofluorescence images corresponding to Fig. 4. (A) Individual

fluorescence channels and merged images for TTF-1, Napsin A, CK7, Ki67, and DAPI (nuclear counterstain) in lung adenocarcinoma tissue and matched MF-gel-cultured LCO. **(B)** Individual fluorescence channels and merged images for TTF-1, p63, CK5, Ki67, and DAPI in lung squamous cell carcinoma tissue and matched MF-gel-cultured LCO. The white-boxed regions were selected for presentation in Fig. 4.All images were acquired by confocal microscopy (Zeiss LSM 880); scale bars,  $50 \, \mu m$ .



**Fig. S4** Immunohistochemical (IHC) characterization of lung-cancer organoids (LCOs) cultured in MF-gel and their corresponding parental tumors. **(A)** Representative IHC images of parental lung adenocarcinoma tissue and matched LCOs grown in MF-gel, stained for α-SMA, CD68, CD8, CD3 and CD45. **(B)** Representative IHC images of parental lung squamous-cell carcinoma tissue and matched LCOs grown in MF-gel, stained for α-SMA, CD68, CD8, CD3 and CD45. Scale bar, 100 μm.



Fig. S5 Lung cancer tissues' genetic characteristics are preserved in MF-gel culture. (A) The heat-map

analysis involved the examination of the most significant mutations found in lung cancer samples from patients and lung cancer organoids in two gels. (B) The comparison was made between the VAF of genetic alterations in lung cancer organoids within MF-gel and lung cancer samples. (C) A visual representation illustrating the distribution of genetic alterations in cancer driver genes within LC samples and their corresponding lung cancer organoids cultured in two gels. (D) Comparison of mutation ratios between lung cancer samples from patients and lung cancer organoids in two gels. The corresponding indications of specific base substitutions are provided. VAF represents the fraction of variant alleles.



**Fig. S6** Gene Ontology (GO) analysis of MF-gel-cultivated lung cancer organoids (LCOs) compared to Con-gel-cultivated LCOs. (A) GO analysis of top 20 Biological Process Enrichment on MF-gel-cultivated LCOs compared to Con-gel-cultivated LCOs. (B) GO analysis of top 20 of Cellular

Component Enrichment on MF-gel-cultivated LCOs compared to Con-gel-cultivated LCOs. (C) GO analysis of top 20 of Molecular Function Enrichment on MF-gel-cultivated LCOs compared to Congel-cultivated LCOs



**Fig. S7**. MF-gel increases the ability of migration and invasion of lung cancer organoids (LCOs). **(A)** Migration assays of LCOs cultivated in Con-gels and MF-gels. Representative images (upper) and quantitative data (bottom) are shown. **(B)** Invasion assays of LCOs cultivated in Con-gels and MF-gels. Representative images (upper) and quantitative data (bottom) are shown. Data are plotted as mean  $\pm$  standard deviation. Scale bar, 100 μm.

Table S1. Summary table of clinical information of patient donors

| Line   | Age | Sex    | Pathology type                          | Differentiation | (y)pStage | Tumor size (longest diameter/cm) | Neoadjuvant<br>therapy | Location          |
|--------|-----|--------|-----------------------------------------|-----------------|-----------|----------------------------------|------------------------|-------------------|
| LCO-1  | 30  | Male   | Lymphoepithelial carcinoma              | Poor            | pT2bN1M0  | 4.2                              | None                   | Left lower lobe   |
| LCO-2  | 68  | Male   | Squamous cell carcinoma                 | Moderate        | pT1cN1M0  | 3                                | None                   | Left upper lobe   |
| LCO-3  | 57  | Male   | Adenocarcinoma and neuroendocrine tumor | Poorly          | ypT3N2M0  | 7                                | Yes                    | Left upper lobe   |
| LCO-4  | 74  | Male   | Adenocarcinomas                         | Moderate-poor   | ypT2bN1M0 | 4.1                              | Yes                    | Left upper lobe   |
| LCO-5  | 78  | Male   | Adenocarcinoma                          | Poor            | pT4N0M0   | 7.1                              | None                   | Right lower lobe  |
| LCO-6  | 72  | Male   | Squamous cellcarcinoma                  | Moderate        | pT2aN0M0  | 3.7                              | None                   | Left upper lobe   |
| LCO-7  | 76  | Male   | Adenocarcinoma                          | Poor            | pT3N2M0   | 5.5                              | None                   | Right upper lobe  |
| LCO-8  | 54  | Male   | Squamous cellcarcinoma                  | Moderate        | ypT2N1M0  | 5                                | Yes                    | Right median lobe |
| LCO-9  | 69  | Male   | Adenocarcinoma                          | Poor            | ypT1bN0M0 | 3.3                              | Yes                    | Right lower lobe  |
| LCO-10 | 69  | Male   | Squamous cell carcinoma                 | Well-moderate   | ypT4N0M0  | 7.8                              | Yes                    | Left upper lobe   |
| LCO-11 | 55  | Female | Adenocarcinoma                          | Moderate-poor   | ypT2bN2M0 | 4.7                              | Yes                    | Left lower lobe   |
| LCO-12 | 61  | Male   | Squamous cell carcinoma                 | Moderate        | ypT0N0M0  | 2.4                              | Yes                    | Right upper lobe  |
| LCO-13 | 71  | Male   | Adenocarcinoma                          | Poor            | ypT1cN0M0 | 2.8                              | Yes                    | Right upper lobe  |
| LCO-14 | 67  | Male   | Squamous cell carcinoma                 | Moderate-poor   | pT2bN0M0  | 4.8                              | None                   | Left upper lobe   |
| LCO-15 | 58  | Female | Adenocarcinoma                          | Poor            | pT3N2M0   | 5.8                              | None                   | Right upper lobe  |

Table S1. (continued)

| Line   | Age | Sex    | Pathology type          | Differentiation | (y)pStage | Tumor size (longest diameter/cm) | Neoadjuvant<br>therapy | Location                    |
|--------|-----|--------|-------------------------|-----------------|-----------|----------------------------------|------------------------|-----------------------------|
| LCO-16 | 64  | Male   | Squamous cell carcinoma | Moderate        | pT2aN0M0  | 3.8                              | None                   | Right lower lobe            |
| LCO-17 | 71  | Male   | Squamous cell carcinoma | Well            | ypT0N0M0  | 4.5                              | Yes                    | Right upper lobe            |
| LCO-18 | 58  | Male   | Adenocarcinoma          | Moderate        | pT2bN0M0  | 4.5                              | None                   | Right lower lobe            |
| LCO-19 | 73  | Female | Adenocarcinoma          | Moderate        | pT1cN0M0  | 4.2                              | None                   | Left lower lobe             |
| LCO-20 | 48  | Male   | Adenocarcinoma          | Poor            | ypT3N0M0  | 5.4                              | Yes                    | Right upper lobe            |
| LCO-21 | 79  | Female | Adenocarcinoma          | Moderate        | pT2N2M0   | 4.7                              | None                   | Right median and lower lobe |
| LCO-22 | 48  | Male   | Adenocarcinoma          | Poor            | ypT3N0M0  | 3.9                              | Yes                    | Right lower lobe            |
| LCO-23 | 78  | Male   | Squamous cell carcinoma | Moderate        | ypT1aN0M0 | 3.7                              | Yes                    | Left lower lobe             |
| LCO-24 | 73  | Female | Adenocarcinoma          | Moderate-poor   | pT2aN0M0  | 3.8                              | None                   | Left lower lobe             |
| LCO-25 | 85  | Male   | Squamous cell carcinoma | Well-moderate   | ypT1bN0M1 | 1.5                              | Yes                    | Right lower lobe            |

Table S2. Primer sequences for RT-qPCR analysis of inflammatory markers in THP-1 cells

| Gene    | Forward primer (5'-3')   | Reverse primer (5'-3')  |
|---------|--------------------------|-------------------------|
| β-actin | AGGCACCAGGGCGTGAT        | GCCCACATAGGAATCCTTCTGAC |
| CD86    | CCATCAGCTTGTCTGTTTCATTCC | GCTGTAATCCAAGGAATGTGGTC |
| IL-6    | ACTCACCTCTTCAGAACGAATTG  | CCATCTTTGGAAGGTTCAGGTTG |
| IL-12A  | CCTTGCACTTCTGAAGAGATTGA  | ACAGGGCCATCATAAAAGAGGT  |
| TNF     | CCTCTCTAATCAGCCCTCTG     | GAGGACCTGGGAGTAGATGAG   |
| CCL1    | CTCATTTGCGGAGCAAGAGAT    | GCCTCTGAACCCATCCAACTG   |
| CD206   | AGCCAACACCAGCTCCTCAAGA   | CAAAACGCTCGCGCATTGTCCA  |
| IL-10   | TCAAGGCGCATGTGAACTCC     | GATGTCAAACTCACTCATGGCT  |

Table S3. Inflammatory marker expression in THP-1 cells after 72 h exposure to CMF, Con-gel, or MF-gel extracts.

| Pro-inflammator | y macrophage (M1) markers | Anti-inflammatory macrophage (M2) markers |              |  |
|-----------------|---------------------------|-------------------------------------------|--------------|--|
| CD86            | Undetectable              | CCL1                                      | Undetectable |  |
| IL-6            | Undetectable              | CD206                                     | Undetectable |  |
| IL-12A          | Undetectable              | IL-10                                     | Undetectable |  |
| TNF             | Undetectable              |                                           |              |  |