Supplementary Information

Discovery of asymmetric pyridinium-based fluorescent probes with large Stokes shifts for live neural stem/progenitor cells

Ye Ri Han ^{†a}, Dongwan Ko ^{†b}, Young-ran Hwang ^b, Myeong A Choi ^c, Do-Geun Kim^d, Jung Yeol Lee ^{*c} and Beomsue Kim ^{*b}

^a Department of Chemistry, Duksung Women's University, Seoul 01369, Republic of Korea.

^b Neural Circuit Research Group, Korea Brain Research Institute, 61, Cheomdan-ro, Dong-gu, Daegu, Republic of Korea.

^c New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Chembok-ro Dong-gu Daegu, Republic of Korea.

^d Dementia Research Group, Korea Brain Research Institute, 61, Cheomdan-ro, Dong-gu, Daegu, Republic of Korea

*Corresponding authors:

Beomsue Kim, Ph.D.

Neural Circuit Research Group

Korea Brain Research Institute,

61, Cheomdan-ro, Dong-gu, Daegu, Republic of Korea.

E-mail: kimbs@kbri.re.kr

* Jung Yeol Lee, Ph.D.

New Drug Development Center

Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDIhub)

80 Cheombok-ro. Dong-gu, Daegu, Republic of Korea

E-mail: leejysg@kmedihub.re.kr

† These authors contributed equally.

Experimental section

1. Synthesis

General Procedure: Preparation of Pyridinium Salts using asymmetry internal alkyne (6a-6m)

Preparation of 2-cyclopropyl-3-(4-(dimethylamino)phenyl)-5-methyl-1-phenylpyridin-1-ium tetrafluoroborate (6b) and 3-cyclopropyl-2-(4-(dimethylamino)phenyl)-5-methyl-1-phenylpyridin-1-ium tetrafluoroborate (6b'): To a 5 mL reaction vial were added N-(2methylallyl)aniline (0.2 mmol, 29.4 mg), 4-(cyclopropylethynyl)-N,N-dimethylaniline (0.3 mmol, 55.6 mg), copper acetate (0.4 mmol, 72 mg), [Cp*RhCl₂]₂ (5 mol%), sodium tetrafluoroborate (0.3 mmol, 33 mg) and methanol (1 mL). The resulting solution was stirred at 100 °C for overnight, filtered, and the filtrate was concentrated under reduced pressure giving a residue that was subjected to prep HPLC to give **6b** and **6b'** in 26% and 24% yield respectively (yellow solid, 21.6 mg of **6b** and 20 mg of **6b'**).

¹H NMR of **6b** (400 MHz, MeOD) δ 8.51 (s, 1H), 7.77 (s, 1H), 7.38-7.30 (m, 5H), 7.01 (d, J = 8.8 Hz, 2H), 6.53 (d, J= 8.8 Hz, 2H), 2.95 (s, 6H), 2.59 (s, 3H), 1.86-1.81 (m, 1H), 1.10-1.05 (m, 2H), 0.94-0.89 (m, 2H); ¹³C NMR of **6b** (100 MHz, MeOD) δ 155.4, 152.3, 146.0, 144.3, 143.7, 143.3, 138.1, 132.3, 131.2, 130.5, 127.5, 118.1, 112.4, 40.1, 18.0, 14.3, 11.4; LC/MS(ESI) m/z : 329 [M+H]⁺

¹H NMR of **6b**' (400 MHz, MeOD) δ 8.48 (s, 1H), 8.21 (s, 1H), 7.67-7.62 (m, 5H), 7.51 (d, J = 8.44 Hz, 2H), 7.20 (d, J = 8.44 Hz, 2H), 3.14 (s, 6H), 2.60 (s, 3H), 2.06-2.01 (m, 1H), 0.66-0.61 (m, 2H), 0.24-0.23 (m, 2H); ¹³C NMR of **6b**' (100 MHz, MeOD) δ 153.7, 151.8, 148.9, 145.2, 145.1, 144.0, 137.8, 132.0, 131.8, 131.1, 127.1, 125.2, 113.8, 40.9, 17.9, 16.0, 12.6; LC/MS(ESI) m/z : 329 [M+H]⁺

Preparation of 1-([1,1'-biphenyl]-4-yl)-2-cyclopentyl-3-(4-(dimethylamino)phenyl)-5methylpyridin-1-ium tetrafluoroborate (6c)

General procedure was used employing *N*-(2-methylallyl)-[1,1'-biphenyl]-4-amine (**1a**) and 4-(cyclopentylethynyl)-N,N-dimethylaniline (**2c**) to give the desired product **6c** (yellow solid, 6% yield). ¹H NMR (400 MHz, MeOD) δ 8.77 (s, 1H), 8.63 (s, 1H), 7.67 (d, J = 8.56 Hz, 2H), 7.60 (d, J = 1.36 Hz, 2H), 7.58-7.36 (m, 5H), 7.09 (d, J = 8.88 Hz, 2H), 6.67 (d, J = 8.88 Hz, 2H), 3.08-2.99 (m, 1H), 2.93 (s, 6H), 2.63 (s, 3H), 2.02-1.86 (m, 4H), 1.77-1.66 (m, 4H); ¹³C NMR (100 MHz, MeOD) δ 155.1, 152.4, 148.7, 146.7, 144.6, 144.2, 143.4, 140.1, 138.5, 132.0, 130.1, 129.4, 128.7, 128.08, 128.06, 118.1, 112.4, 43.2, 40.1, 36.3, 26.8, 18.1; LC/MS(ESI) m/z : 433 [M+H]⁺

2. WST-1 assay

Cell viability and proliferation were assessed using the WST-1 assay according to the manufacturer's instructions. Cells were seeded into 96-well plates at a density of 1×10^4 cells per well one day before treatment. For viability, cells were treated with the indicated concentrations of compounds for 1 hour, followed by replacement with 100 µL of fresh medium. For proliferation, cells were treated in the same way, then further incubated for 1, 2, or 3 days after medium replacement. On the day of the WST-1 assay, the culture medium was refreshed (100 µL per well), and 10 µL of WST-1 reagent (Cell Proliferation Reagent WST-1, Roche, 5015944001, USA) was added. After 2 hours of incubation at 37 °C, absorbance was measured at 440 nm using a SpectraMax microplate reader. Results were calculated as values relative to untreated control cells.

3. Cell fractionation for mechanistic analysis

SH-SY5Y cells were harvested and resuspended at 4×10^5 cells per tube in DMEM supplemented with 10% FBS and 100 μ M **KD01**. The suspension was incubated for 1 hour at 37 °C, followed by centrifugation at 1,000 rpm for 5 minutes. The supernatant was discarded. For the non-lysed sample, the cell pellet was directly resuspended in PBS. For fractionated samples, the pellet was resuspended in PBS containing 1% Triton X-100 (PBS–T) and incubated for 15 minutes at room temperature. After centrifugation at 12,000 rpm for 15 minutes at 4 °C, the supernatant was collected as the Triton-soluble fraction, and the remaining pellet was resuspended in PBS as the Triton-insoluble fraction. The three samples (intact cells, Triton-soluble fraction, and Triton-insoluble fraction) were transferred to a black 96-well plate, and fluorescence was measured using a SpectraMax microplate reader with excitation at 405 nm.

4. Quantification of Neurite Outgrowth Using Imaris Filament Tracer

Differentiated SH-SY5Y neurite outgrowth was measured using the Filament module of Imaris (Oxford Instruments, Abingdon, UK). Neurite structures were reconstructed based on Tuj1 immunostaining in the red fluorescence channel, which selectively labels neuronal processes. The number of branches was automatically quantified based on fluorescence intensity and morphology. Seed point threshold and minimal segment length were adjusted to optimize filament detection.

5. Statistical analysis

Statistical analysis was performed using GraphPad Prism software (GraphPad Software, San Diego, CA, USA). One-way analysis of variance (ANOVA) was applied for comparisons among multiple groups, and p-values are indicated in the figure legends.

Table S1. Secondary allylamine and internal alkyne scope of the N-annulation process forrepresentative pyridinium salt formation^a

^aUnless otherwise noted, reactions were carried out with **1** (0.2 mmol), **2** (0.4 mmol), **3a** (5 mol %), **4a** (0.4 mmol), and **5a** (0.3 mmol) in 0.5 mL of MeOH at 100 °C. ^bAll yields are isolated yields.

Table S2. Secondary Allylamine (1) Scope of the N-Annulation Process for Pyridinium SaltFormation^a

^aUnless otherwise noted, reactions were carried out with **1** (0.2 mmol), **2b** (0.4 mmol), **3a** (5 mol %), **4a** (0.4 mmol), and **5a** (0.3 mmol) in 0.5 mL of MeOH at 100 °C. ^bAll yields are isolated yields. ^ccyclopropyl ring opened structure.

Table S3. Internal Alkyne (2) Scope of the N-Annulation Process for Pyridinium SaltFormation^a

^aUnless otherwise noted, reactions were carried out with **1a** (0.2 mmol), **2** (0.4 mmol), **3a** (5 mol %), **4a** (0.4 mmol), and **5a** (0.3 mmol) in 0.5 mL of MeOH at 100 °C. ^bAll yields are isolated yields.

	structure	name	¹ H NMR, MS	Yield
				(%)
1		6a	¹ H NMR 400 MHz, CDCl ₃ δ 8.68 (s, 1H), 8.26 (s, 1H), 7.69-7.37 (m, 9H), 6.92 (d, J = 8.12 Hz, 2H), 6.56 (d, J = 8 Hz, 2H), 2.65 (s, 3H), 1.82-1.68 (m, 5H), 1.50-1.41 (m, 2H), 1.20- 1.09 (m, 4H); 419 [M+H] ⁺	4
2	A	64	H NMP 400 MH7 CDC1 8 8 75	5
2	BF4 () N N	ou .	(br-s, 1H), 7.49 (s, 1H), 7.21-7.20 (m, 3H), 7.04 (d, $J = 8.48$ Hz, 2H), 6.86-6.85 (m, 2H), 6.80 (d, $J = 8.4$ Hz, 2H), 4.65 (br-s, 2H), 3.09 (s, 6H), 3.08-3.03 (m, 2H), 2.45 (s, 3H), 1.64-1.57 (m, 1H), 0.99-0.96 (m, 2H), 0.78-0.75 (m, 2H); 357 [M+H] ⁺	5
3		6d'	¹ H NMR 400 MHz, CDCl ₃ δ 8.77	3
	BF4 T N N N N N N N N N N N N N		$ (br-s, 1H), 7.94 (s, 1H), 7.33-7.27 \\ (m, 3H), 7.06 (d, J = 8.68 Hz, 2H), \\ 6.98 (d, J = 6.48 Hz, 2H), 6.83 (d, J = 8.68 Hz, 2H), 5.23 (t, J = 5.72 Hz, 2H), 3.32 (br-s, 2H), 3.06 (s, 6H), \\ 2.50 (s, 3H), 1.02-0.97 (m, 2H), \\ 0.89-0.86 (m, 1H), 0.45-0.43 (m, 2H); 357 [M+H]^+ $	
4	©BF4 W N N N N N N N N	6e"	¹ H NMR 400 MHz, CDCl ₃ δ 8.47 (s, 1H), 8.33 (s, 1H), 7.04 (d, J = 8.28 Hz, 2H), 6.92 (d, J = 8.6 Hz, 2H), 6.58-6.53 (m, 4H), 6.51-6.49 (m, 1H), 6.11 (d, J = 15.76 Hz, 1H), 2.98 (s, 6H), 2.95 (s, 6H), 2.60 (s, 3H), 1.85 (d, J = 6.2 Hz, 3H); 372 [M+H] ⁺	17
5	BF4 N N	6f	¹ H NMR 400 MHz, CDCl ₃ δ 8.54 (s, 1H), 7.78 (s, 1H), 7.58 (d, J = 8.16 Hz, 2H), 7.55-7.52 (m, 2H), 7.45- 7.37 (m, 5H), 7.06 (d, J = 8.8 Hz, 2H), 6.54 (d, J = 8.84 Hz, 2H), 2.93 (s, 6H), 2.60 (s, 3H), 1.88-1.82 (m, 1H), 1.10-1.05 (m, 2H), 0.94-0.90 (m, 2H); 405 [M+H] ⁺	17
6	BF4 N N	6f ²	¹ H NMR 400 MHz, CDCl ₃ δ 8.53 (s, 1H), 8.21 (s, 1H), 7.86 (d, J = 7.88 Hz, 2H), 7.70 (d, J = 7.96 Hz, 2H), 7.65 (d, J= 7.32 Hz, 2H), 7.53-7.42 (m, 5H), 7.13 (d, J = 7.88 Hz, 2H), 3.12 (s, 6H), 2.61 (s, 3H), 2.12-2.09 (m, 1H), 0.70-0.66 (m, 2H), 0.28- 0.27 (m, 2H); 405 [M+H] ⁺	11

Table S4. ¹H NMR data and isolated yield of each pyridinium salt

7		6g	¹ H NMR 400 MHz, CDCl ₃ δ 8.65 (br-s, 1H), 7.66 (s, 1H), 7.07 (br-s, 2H), 6.97 (d, J = 8.28 Hz, 2H), 6.80	6
			(br-s, 2H), 6.56 (d, J = 8.28 Hz, 2H), 3.74-3.66 (m, 2H), 3.48-3.39 (m,	
	\square		4H), 3.15-3.13 (m, 2H), 2.97 (s, 6H),	
			2.84 (s, 3H), 2.57 (s, 3H), 1.86-1.83 (m, 1H), 1.11-1.06 (m, 2H), 0.88-	
	N		0.87 (m, 2H); 427 [M+H] ⁺	
8		6g'	¹ H NMR 400 MHz, CDCl ₃ δ 8.58 (s, 1H), 8.13 (s, 1H), 7.43 (d, J = 7.88	12
			Hz, 2H), 7.36 (d, J = 8.64 Hz, 2H),	
			7.08 (d, J = 7.88 Hz, 2H), 6.87 (d, J = 8.64 Hz, 2H), 3.93-3.90 (m, 2H),	
			3.64-3.62 (m, 2H), 3.57-3.50 (m,	
			2H), 3.21-3.14 (m, 2H), 3.08 (s, 6H), 2.91 (s, 3H), 2.59 (s, 3H), 2.04-2.01	
			(m, 1H), 0.76-0.71 (m, 2H), 0.21-	
9		6g"	¹ H NMR 400 MHz, CDCl ₃ δ 8.68	7
	BF ₄ N	-	(br-s, 1H), 8.31 (s, 1H), 7.06 (br-s,	
			(br-s, 2H), 6.56 (d, J = 7.88 Hz, 2H), 6.80 (br-s, 2H), 6.56 (d, J = 7.88 Hz, 2H), 6.80 (d, J = 7.80	
			6.49-6.44 (m, 1H), 6.16 (d, J = 15.64	
			3.45 (m, 4H), 3.12-3.08 (m, 2H),	
			2.99 (s, 6H), 2.85 (s, 3H), 2.60 (s, 3H) 1.88 (d, I = 6.12 Hz, 3H): 427	
	N		[M+H] ⁺	
10	⊖ BF₄ ∽	6h	¹ H NMR 400 MHz, MeOD δ 8.82 (d. J = 0.76 Hz, 1H), 8.18 (d. J =	30
	÷		0.92 Hz, 1H), 7.72-7.70 (m, 2H),	
			7.60-7.52 (m, 4H), 7.47-7.37 (m, 3H), 6.73 (s, 2H), 3.73 (s, 6H), 3.70	
			(s, 3H), 2.62 (s, 3H), 1.91-1.87 (m,	
	MeOOMe		(m, 2H); 452 [M+H] ⁺	
	ÓМе			
11		6h'		
		0H	¹ H NMR 400 MHz, MeOD δ 8.88	12
	BF ₄		¹ H NMR 400 MHz, MeOD & 8.88 (d, J = 1.16 Hz, 1H), 8.53 (d, J = 1.48 Hz, 1H), 8.01-7.97 (m, 2H),	12
	BF ₄		¹ H NMR 400 MHz, MeOD δ 8.88 (d, J = 1.16 Hz, 1H), 8.53 (d, J = 1.48 Hz, 1H), 8.01-7.97 (m, 2H), 7.85-7.82 (m, 2H), 7.77-7.74 (m, 2H), 7.54, 7.42 (m, 2H), 6.0 (c, 2H)	12
	BF ₄	on a second s	¹ H NMR 400 MHz, MeOD & 8.88 (d, J = 1.16 Hz, 1H), 8.53 (d, J = 1.48 Hz, 1H), 8.01-7.97 (m, 2H), 7.85-7.82 (m, 2H), 7.77-7.74 (m, 2H), 7.54-7.43 (m, 3H), 6.96 (s, 2H), 3.92 (s, 6H), 3.85 (s, 3H), 2.63 (s,	12
	BF ₄		¹ H NMR 400 MHz, MeOD δ 8.88 (d, J = 1.16 Hz, 1H), 8.53 (d, J = 1.48 Hz, 1H), 8.01-7.97 (m, 2H), 7.85-7.82 (m, 2H), 7.77-7.74 (m, 2H), 7.54-7.43 (m, 3H), 6.96 (s, 2H), 3.92 (s, 6H), 3.85 (s, 3H), 2.63 (s, 3H), 2.36-2.29 (m, 1H), 0.70-0.65 (m, 2H), 0.34 0.29 (m, 2H): 452	12
	BF ₄		¹ H NMR 400 MHz, MeOD δ 8.88 (d, J = 1.16 Hz, 1H), 8.53 (d, J = 1.48 Hz, 1H), 8.01-7.97 (m, 2H), 7.85-7.82 (m, 2H), 7.77-7.74 (m, 2H), 7.54-7.43 (m, 3H), 6.96 (s, 2H), 3.92 (s, 6H), 3.85 (s, 3H), 2.63 (s, 3H), 2.36-2.29 (m, 1H), 0.70-0.65 (m, 2H), 0.34-0.29 (m, 2H); 452 [M+H] ⁺	12
12	BF ₄	6i	¹ H NMR 400 MHz, MeOD δ 8.88 (d, J = 1.16 Hz, 1H), 8.53 (d, J = 1.48 Hz, 1H), 8.01-7.97 (m, 2H), 7.85-7.82 (m, 2H), 7.77-7.74 (m, 2H), 7.54-7.43 (m, 3H), 6.96 (s, 2H), 3.92 (s, 6H), 3.85 (s, 3H), 2.63 (s, 3H), 2.36-2.29 (m, 1H), 0.70-0.65 (m, 2H), 0.34-0.29 (m, 2H); 452 [M+H] ⁺ ¹ H NMR 400 MHz, CDCl ₃ δ 8.56 (s,	12 29
12	BF ₄	-6i	¹ H NMR 400 MHz, MeOD δ 8.88 (d, J = 1.16 Hz, 1H), 8.53 (d, J = 1.48 Hz, 1H), 8.01-7.97 (m, 2H), 7.85-7.82 (m, 2H), 7.77-7.74 (m, 2H), 7.54-7.43 (m, 3H), 6.96 (s, 2H), 3.92 (s, 6H), 3.85 (s, 3H), 2.63 (s, 3H), 2.36-2.29 (m, 1H), 0.70-0.65 (m, 2H), 0.34-0.29 (m, 2H); 452 [M+H] ⁺ ¹ H NMR 400 MHz, CDCl ₃ δ 8.56 (s, 1H), 7.82 (s, 1H), 7.56 (d, J = 7.64 Hz, 2H), 7.51 (d, J = 7.16 Hz, 2H)	12 29
12	BF ₄ OMe OMe OMe OMe	6i	¹ H NMR 400 MHz, MeOD & 8.88 (d, J = 1.16 Hz, 1H), 8.53 (d, J = 1.48 Hz, 1H), 8.01-7.97 (m, 2H), 7.85-7.82 (m, 2H), 7.77-7.74 (m, 2H), 7.54-7.43 (m, 3H), 6.96 (s, 2H), 3.92 (s, 6H), 3.85 (s, 3H), 2.63 (s, 3H), 2.36-2.29 (m, 1H), 0.70-0.65 (m, 2H), 0.34-0.29 (m, 2H); 452 [M+H] ⁺ ¹ H NMR 400 MHz, CDCl ₃ & 8.56 (s, 1H), 7.82 (s, 1H), 7.56 (d, J = 7.64 Hz, 2H), 7.51 (d, J = 7.16 Hz, 2H), 7.45-7.36 (m, 5H), 7.20 (d, J = 8.52	12 29
12	BF ₄ OMe OMe OMe BF ₄ OMe	6i	¹ H NMR 400 MHz, MeOD & 8.88 (d, J = 1.16 Hz, 1H), 8.53 (d, J = 1.48 Hz, 1H), 8.01-7.97 (m, 2H), 7.85-7.82 (m, 2H), 7.77-7.74 (m, 2H), 7.54-7.43 (m, 3H), 6.96 (s, 2H), 3.92 (s, 6H), 3.85 (s, 3H), 2.63 (s, 3H), 2.36-2.29 (m, 1H), 0.70-0.65 (m, 2H), 0.34-0.29 (m, 2H); 452 [M+H] ⁺ ¹ H NMR 400 MHz, CDCl ₃ & 8.56 (s, 1H), 7.82 (s, 1H), 7.56 (d, J = 7.64 Hz, 2H), 7.51 (d, J = 7.16 Hz, 2H), 7.45-7.36 (m, 5H), 7.20 (d, J = 8.52 Hz, 2H), 6.83 (d, J = 8.44 Hz, 2H), 3.77 (s, 3H), 2.61 (s, 3H), 1.76-1.72	29
12	BF ₄ OMe OMe OMe OMe	6i	¹ H NMR 400 MHz, MeOD & 8.88 (d, J = 1.16 Hz, 1H), 8.53 (d, J = 1.48 Hz, 1H), 8.01-7.97 (m, 2H), 7.85-7.82 (m, 2H), 7.77-7.74 (m, 2H), 7.54-7.43 (m, 3H), 6.96 (s, 2H), 3.92 (s, 6H), 3.85 (s, 3H), 2.63 (s, 3H), 2.36-2.29 (m, 1H), 0.70-0.65 (m, 2H), 0.34-0.29 (m, 2H); 452 [M+H] ⁺ ¹ H NMR 400 MHz, CDCl ₃ & 8.56 (s, 1H), 7.82 (s, 1H), 7.56 (d, J = 7.64 Hz, 2H), 7.51 (d, J = 7.16 Hz, 2H), 7.45-7.36 (m, 5H), 7.20 (d, J = 8.52 Hz, 2H), 6.83 (d, J = 8.44 Hz, 2H), 3.77 (s, 3H), 2.61 (s, 3H), 1.76-1.72 (m, 1H), 1.09-1.04 (m, 2H), 0.94- 0.00 (- 2H), 202 F (29
12	BF ₄ OMe OMe OMe BF ₄ OMe	6i	¹ H NMR 400 MHz, MeOD 8 8.88 (d, J = 1.16 Hz, 1H), 8.53 (d, J = 1.48 Hz, 1H), 8.01-7.97 (m, 2H), 7.85-7.82 (m, 2H), 7.77-7.74 (m, 2H), 7.54-7.43 (m, 3H), 6.96 (s, 2H), 3.92 (s, 6H), 3.85 (s, 3H), 2.63 (s, 3H), 2.36-2.29 (m, 1H), 0.70-0.65 (m, 2H), 0.34-0.29 (m, 2H); 452 [M+H] ⁺ ¹ H NMR 400 MHz, CDCl ₃ 8 8.56 (s, 1H), 7.82 (s, 1H), 7.56 (d, J = 7.64 Hz, 2H), 7.51 (d, J = 7.16 Hz, 2H), 7.45-7.36 (m, 5H), 7.20 (d, J = 8.52 Hz, 2H), 6.83 (d, J = 8.44 Hz, 2H), 3.77 (s, 3H), 2.61 (s, 3H), 1.76-1.72 (m, 1H), 1.09-1.04 (m, 2H), 0.94- 0.90 (m, 2H); 392 [M+H] ⁺	29

13	⊖ BF ₄ ⊕ N OMe	6i'	¹ H NMR 400 MHz, CDCl ₃ & 8.63 (br-s, 1H), 8.19 (s, 1H), 7.85-7.76 (m, 4H), 7.65 (d, J = 7.36 Hz, 2H), 7.52-7.41 (m, 5H), 7.04 (d, J = 8.08 Hz, 2H), 3.88 (s, 3H), 2.61 (s, 3H), 2.11-2.10 (m, 1H), 0.66-0.64 (m, 2H), 0.28-0.27 (m, 2H); 392 [M+H] ⁺	9
14	©BF4 ⊕ N C C C B C B C C	6j	¹ H NMR 400 MHz, CDCl ₃ & 8.59 (s, 1H), 7.88 (s, 1H), 7.63-7.53 (m, 6H), 7.49-7.38 (m, 7H), 2.63 (s, 3H), 1.63-1.56 (m, 1H), 1.07-1.05 (m, 2H), 0.95-0.94 (m, 2H); 430 [M+H] ⁺	46
15	⊖ BF4 ⊕ N CF3	6j'	¹ H NMR 400 MHz, CDCl ₃ & 8.71 (br-s, 1H), 8.23 (s, 1H), 7.86-7.79 (m, 5H), 7.71-7.64 (m, 4H), 7.52- 7.42 (m, 4H), 2.65 (s, 3H), 2.17 (br- s, 1H), 0.65-0.63 (m, 2H), 0.29 (br-s, 2H); 430 [M+H] ⁺	12
16	©BF₄ ⊕N N N	6k	¹ H NMR 400 MHz, CDCl ₃ δ 8.65 (br-s, 1H), 8.26 (s, 1H), 7.57-7.52 (m, 4H), 7.45-7.35 (m, 5H), 6.94 (d, J = 8.4 Hz, 2H), 6.54 (d, J = 8.28 Hz, 2H), 2.94 (s, 6H), 2.64 (s, 3H), 1.82- 1.67 (m, 5H), 1.47-1.14 (m, 6H); 447 [M+H] ⁺	12
17	BF ₄ WeO OH	61	¹ H NMR 400 MHz, CDCl ₃ & 8.51 (s, 1H), 7.78 (s, 1H), 7.61-7.38 (m, 8H), 7.17 (br-s, 1H), 6.90-6.74 (m, 3H), 3.70 (s, 3H), 2.59 (s, 3H), 1.85-1.81 (m, 1H), 1.08-1.06 (m, 2H), 0.94- 0.85 (m, 2H); 408 [M+H] ⁺	7
18	⊖ BF ₄ ⊕ N OH OMe	61'	¹ H NMR 400 MHz, CDCl ₃ δ 8.53 (s, 1H), 8.21 (s, 1H), 7.85 (d, J = 7.84 Hz, 2H), 7.78 (d, J = 7.88 Hz, 2H), 7.65 (d, J = 7.28 Hz, 2H), 7.52-7.44 (m, 3H), 7.18 (s, 1H), 7.03 (d, J = 8.12 Hz, 1H), 6.91 (d, J = 7.84 Hz, 1H), 3.95 (s, 3H), 2.61 (s, 3H), 2.20- 2.17 (m, 1H), 0.66-0.64 (m, 2H), 0.29-0.28 (m, 2H); 408 [M+H] ⁺	5

19	BF4 N	6m	¹ H NMR 400 MHz, CDCl ₃ δ 8.53 (br-s, 1H), 7.83 (s, 1H), 7.55-7.50 (m, 4H), 7.45-7.32 (m, 5H), 7.13-7.10 (m, 4H), 2.59 (s, 3H), 2.29 (s, 3H), 1.70 (br-s, 1H), 1.07-1.05 (m, 2H), 0.92 (br- s, 2H); LC/MS(ESI) m/z: 376 [M+H] ⁺	46	
20	BF4 N	6m'	¹ H NMR 400 MHz, CDCl ₃ δ 8.68 (br-s, 1H), 8.18 (s, 1H), 7.86-7.75 (m, 4H), 7.65 (d, J = 7.36 Hz, 2H), 7.52-7.31 (m, 7H), 2.62 (s, 3H), 2.44 (s, 3H), 2.17- 2.09 (m, 1H), 0.64-0.60 (m, 2H), 0.28-0.27 (m, 2H); LC/MS(ESI) m/z: 376 [M+H] ⁺	20	

2-cyclopropyl-3-(4-(dimethylamino)phenyl)-5-methyl-1-phenylpyridin-1-ium tetrafluoroborate (6b)

3-cyclopropyl-2-(4-(dimethylamino)phenyl)-5-methyl-1-phenylpyridin-1-ium tetrafluoroborate (6b')

1-([1,1'-biphenyl]-4-yl)-2-cyclopentyl-3-(4-(dimethylamino)phenyl)-5-methylpyridin-1-ium tetrafluoroborate (6c)

Figure S1. ¹H and ¹³C NMR spectra of representative compounds (6b, 6b' and 6c)

Figure S2. Flow cytometry profiles of primary mouse brain cells treated with lead compounds. Live cells were isolated from the brains of postnatal day 1 mice and incubated for 1 h with 10 μ M of the indicated compounds (6a, 6k, 6c/KD01, and 6f). Fluorescence signal from the stained cells was analyzed using a flow cytometer with a 405 nm excitation laser. The histograms show the fluorescence intensity detected in each of the six violet laser emission channels (VL1–VL6), which are defined by their central wavelength and bandpass filters.

Figure S3 Biocompatibility of KD01 in SH-SY5Y cells. (A) Cell viability was assessed by the WST-1 assay after 1h treatment with KD01 at the indicated concentrations. (B) Cell proliferation over three days was measured by WST-1 assay following a 1h treatment with DMSO (vehicle control), 10 μ M KD01, or 10 μ M 6a. (C) Representative bright-field images of cells on day 3, showing normal morphology in all treatment groups. Scale bar, 200 μ m. Data in (A) and (B) are presented as mean \pm SD (n=3). **, p < 0.01 compared to the untreated control group; ns, not significant.

Figure S4. KD01 does not impair the neural differentiation potential of SH-SY5Y cells. (A) Representative confocal images and (B) quantification of neurite outgrowth from the differentiated SH-SY5Y cells. Cells were treated with 10 μ M KD01 or DMSO (vehicle control) for 1 h and then differentiated for 14 days. Cells were stained for neuronal markers Tuj1 (red) with DAPI (blue) as a nuclear counterstain. The results show that KD01-treated cells differentiated as effectively as the control group. Data in (B) are presented as the mean, with individual data points shown (n=3). Scale bar, 100 μ m. ns, not significant.

A SH-SY5Y undifferentiation

435 nm	445 nm	455 nm	465 nm	475 nm	485 nm	495 nm	505 nm
515 nm	525 nm	535 nm	545 nm	555 nm	565 nm	575 nm	585 nm
595 nm	605 nm	615 nm	625 nm	635 nm	645 nm	655 nm	665 nm
675 nm	685 nm	695 nm	705 nm	715 nm	725 nm	735 nm	745 nm

B SH-SY5Y differentiation

435 nm	445 nm	455 nm	465 nm	475 nm	485 nm	495 nm	505 nm
-	<u>er</u>	-	<u>er</u>		<u></u>	<u>.</u>	
515 nm	525 nm	535 nm	545 nm	555 nm	565 nm	575 nm	585 nm
<u></u>		-					р., ч и
595 nm	605 nm	615 nm	625 nm	635 nm	645 nm	655 nm	665 nm
675 nm	685 nm	695 nm	705 nm	715 nm	725 nm	735 nm	745 nm

C ReNcell differentiation

435 nm	445 nm	455 nm	465 nm	475 nm	485 nm	495 nm	505 nm
515 nm	525 nm	535 nm	545 nm	555 nm	565 nm	575 nm	585 nm
595 nm	605 nm	615 nm	625 nm	635 nm	645 nm	655 nm	665 nm
675 nm	685 nm	695 nm	705 nm	715 nm	725 nm	735 nm	745 nm 2000

Figure S5. Spectral emission profiles of KD01 in various neural cell states. Representative spectral confocal images showing the fluorescence emission of KD01 in (A) undifferentiated SH-SY5Y cells, (B) differentiated SH-SY5Y cells, and (C) differentiated ReNcell VM cells. For spectral imaging, cells were excited at 405 nm, and emission was captured from 435 nm to 745 nm.

Figure S6. Fluorescence emission spectra of KD01 in different cellular fractions. For comparison, three parallel samples were prepared from an equivalent number of KD01-treated (100 μ M, 1 h) SH-SY5Y cells. Sample 1 (Intact): The cell pellet was resuspended in PBS. Samples 2 & 3 (Fractions): An equivalent cell pellet was lysed with 1% Triton X-100 and separated by centrifugation into the soluble (supernatant) and insoluble (pellet) fractions. The fluorescence emission spectra of all three samples were recorded with excitation at 405 nm.